FINAL

DAMAGE ASSESSMENT AND RESTORATION PLAN AND ENVIRONMENTAL ASSESSMENT FOR THE DECEMBER 7, 1997 ALAFIA RIVER SPILL

PREPARED BY

ENVIRO NMENTAL PRO TECTIO N CO MMISSIO N O FHILLSBO RO UGH CO UNTY FLORIDA DEPARTMENT O FENVIRO NMENTAL PRO TECTIO N NATIO NALO CEANIC AND ATMO SPHERIC ADMINISTRATIO N PO LK CO UNTY, NATURA LRESO URCES UNITED STATES FISH & WILDLIFE SERVICE

July 21, 2000

TABLE OF CONTENTS

1.0			Page
1.0		RODUCTION	1
	1.1	Authority	1
	1.2	Coordination with Responsible Party	2
	1.3	Public Participation	3
	1.4	NEPA Compliance	3
	1.5	Administrative Record	4
2.0	OVE	RVIEW OF THE DECEMBER 7, 1997 ALAFIA RIVER SPILL	6
	2.1	Description of the December 7, 1997 Spill Incident	6
	2.2	Affected Environments: The Alafia River and Tampa Bay	6
		2.2.1 Physical Environments	7
		2.2.2 Biological Environments	8
		2.2.3 Cultural Environment and Human Use	9
	2.3	Summary of Preassessment Activities	9
	2.4	Natural Resources and Resource Services Injured	10
	2.5	Natural Resources and Resource Services with Significant	
		Potential for Injury	10
	2.6	Natural Resources With No Documented Injuries	11
3.0	ASSI	ESSMENT AND RESTORATION SCALING PROCEDURES FOR	
	QUA	NTIFIED INJURY CATEGORIES	13
	3.1	Freshwater Wetlands	13
		3.1.1 Overview of Preassessment Activities and Findings	13
		3.1.2 Determination of Injury	14
		3.1.3 Assessment Method	14
	3.2	Fish, Crab, and Shrimp	16
		3.2.1 Overview of Preassessment Activities and Findings	16
		3.2.2 Early Restoration Actions	18
		3.2.3 Determination of Injury	19
		3.2.4 Assessment Method	19
	3.3	Surface Water	20
		3.3.1 Overview of Preassessment Activities and Findings	20
		3.3.2 Determination of Injury	22
		3.3.3 Assessment Method	23
	3.4	Benthic Invertebrates	24
	-	3.4.1 Overview of Preassessment Activities and Findings	24
		3.4.2 Determination of Injury	25
		3.4.3 Assessment Method	25

				Page	
3.5	Oyst	ers and M		26	
			Overview of Preassessment Activities and Findings	26	
			Determination of Injury	27	
		3.5.3 A	Assessment Method	27	
4.0	RES	TORATI	ON STRATEGY FOR NON-QUANTIFIED		
	INJURY CATEGORIES				
	4.1	Birds		31	
		4.1.1 (Overview of Preassessment Activities and Findings	31	
		4.1.2 A	Assessment Determination	32	
	4.2	Recreat	ional Fishing Losses	33	
		4.2.1 (Dverview of Preassessment Activities and Findings	33	
		4.2.2 A	Assessment Determination	34	
5.0	OVE	RVIEW (DF ASSESSMENT AND RESTORATION PLAN	35	
	5.1	Restora	tion Planning Strategy	35	
	5.2	Framew	ork for Identifying Preferred Restoration Alternatives	36	
		5.2.1 8	Selection Criteria	38	
	5.3	Screeni	ng Restoration Alternatives	39	
6.0	PROPOSED RESTORATION PLAN				
	6.1		tion Objectives for Injured Resources	40	
	6.2	No Acti	on Alternative	41	
	6.3	Restora	tion of Riverine Habitat - Selected Alternative for		
		Restora	tion of Freshwater Wetlands and Surface Water Services	41	
			Evaluation of Alternative	42	
			Restoration Scaling	43	
			Environmental and Socio-Economic Impact	45	
	6.4		tion of Estuarine W etlands - Co-Selected A lternative for		
			tion of Fish, Crab and Shrimp Biomass Lost	45	
			Evaluation of Alternative	45	
			Restoration Scaling	47	
			Environmental and Socio-Economic Impact	47	
	6.5 Oyster Reef Creation - Co-Selected Alternative for Restoring				
			omass Lost	48	
			Evaluation of Alternative	48	
			Restoration Scaling	49	
		6.5.3 H	Environmental and Socio-Economic Impact	50	

		Page
6.6	i v	50
		51
	•	51
6.7	-	52
		52
	6.7.2 Environmental and Socio-Economic Impact	53
ESTI	MATING RESTORATION COSTS	54
COM	PLIANCE WITH OTHER KEY STATUTES, REGULATIONS	
AND	POLICIES	56
FIND	ING OF NO SIGNIFICANT IMPACT (IF APPLICABLE)	60
REFI	ERENCES	61
10.1	Spill Reports Cited	61
10.2	Literature Cited	61
ENDIX	A DESIGNATED SPECIES	64
ENDIX	B pH STATION DATA	69
ENDIX	C SUMMARY OF PROJECT PROPOSALS FOR TOP 5	
	RESTORATION ALTERNATIVES	73
INDIX	D RESPONSIBLE PARTY COMMENTS AND	
	AGENCIES' RESPONSE	75
NDIX	E PUBLIC COMMENTS AND AGENCIES' RESPONSE	93
ENDIX	F SUMMARY 0 F COASTALZ 0 NE MANAGEMENT ACT (CZMA), CONSISTENCY RE VIEW COMMENTS AND AGENCIES' RE SP0 NSE	102
	COM AND FIND REFI 10.1 10.2 CNDIX CNDIX CNDIX CNDIX	6.6.1Evaluation of Alternative6.6.2Environmental and Socio-Economic Impact6.7Land Acquisition - Non-Selected Alternative6.7.1Evaluation of Alternative6.7.2Environmental and Socio-Economic ImpactESTIMATING RESTORATION COSTSCOMPLIANCE WITH OTHER KEY STATUTES, REGULATIONS AND POLICIESFINDING OF NO SIGNIFICANT IMPACT (IF APPLICABLE)REFERENCES10.1Spill Reports Cited 10.210.2Literature CitedCNDIX ADESIGNATED SPECIESENDIX BpH STATION DATACOMMENTS AND AGENCIES' RESPONSEENDIX DRESPONSIBLE PARTY COMMENTS AND AGENCIES' RESPONSEENDIX EPUBLIC COMMENTS AND AGENCIES' RESPONSEENDIX FSUMMARY OF COASTALZ ONE MANAGEMENT ACT (CZMA), CONSISTENCY REVIEW CO MMENTS

1.0 INTRODUCTION

This Damage Assessment and Restoration Plan and Environmental Assessment (DARP/EA) has been developed by State, County and Federal agencies to address the injury to, loss of, destruction of, and lost use of natural resources resulting from Mulberry Phosphates, Inc.'s (MPI) December 7, 1997 spill of acidic process water into the Alafia River. This plan identifies the assessment methods and restoration actions which the agencies plan to use as the basis for assessing natural resource damages for this spill event. This plan seeks to compensate for the natural resource injuries and resource losses which occurred through appropriate restoration actions. The purpose of restoration under this plan is to make the public whole for injuries or losses resulting from the spill by ensuring that injured natural resources or services return to pre-spill, or baseline, conditions and by providing for restoration or replacement of resources or resource services in order to compensate for interim losses of resources or resource services caused by the spill.

This DARP/EA:

- Describes the accidental release of acidic process water which occurred on December 7, 1997 and the natural resource injuries and losses which resulted from that release,

- Identifies the procedures used to document and quantify those natural resource injuries and losses,

- Establishes objectives for restoring these injuries and losses,

- Identifies and evaluates a reasonable number of restoration alternatives appropriate to achieving restoration objectives for these injuries and losses,

- Identifies the restoration actions which the Agencies plan to use to restore natural resources or services to compensate for the natural resource injuries and losses which occurred,

- Identifies the methods which will be used to scale those proposed restoration actions, to compensate for the resource injuries and losses,

- Identifies the methods which will be used to calculate the costs of implementing selected restoration actions.

1.1 Authority

The DARP/EA has been prepared jointly by the Florida Department of Environmental Protection (DEP), the Environmental Protection Commission of Hillsborough County (EPC), Polk County, Natural Resources and Drainage Division (Polk County), the National Oceanic and Atmospheric Administration (NOAA), and the U.S. Fish and Wildlife Service (FWS) on behalf of the

U.S. Department of the Interior (DOI) (collectively "the Agencies"). DEP, NOAA, and DOI are acting under their authority as natural resource trustees under the Comprehensive Environmental Response, Compensation and Liability Act (CERCLA), as amended, 42 U.S.C. § 9601 et seq., the Federal Water Pollution Control Act, 33 U.S.C. §1251 et seq., (also known as the Clean Water Act or CWA) and other applicable Federal law including the National Oil and Hazardous Substances Pollution Contingency Plan (NCP) Subpart G, 40 C.F.R. Sections 300.600 - 300.615 and regulations at 43 C.F.R. Part 11 which are applicable to natural resource damage assessments under CERCLA. In addition, DEP is acting pursuant to authority provided by Chapters 376 and 403, Florida Statutes, and other applicable provisions of State law. EPC is acting pursuant to Chapter 84-446, Laws of Florida, as amended, and Section 403.182, Florida Statutes. Polk County is acting in accordance with Polk County Ordinance 93-06 and other applicable regulations. Each Agency is authorized under applicable authorities to assess and recover natural resource damages for this spill event and to base that assessment on the costs to restore, replace or acquire the equivalent of the injured resources, and lost resource services.

1.2 Coordination with Responsible Party

Under CERCLA and state laws, the party responsible for a spill such as this ('responsible party' or RP) is liable for any injuries to natural resources resulting from the release.

An RP may participate in a natural resource damage assessment process. Regulations applicable to assessments under CERCLA indicate an RP is to be notified of an agency's intent to proceed with an assessment and invited to participate in the development and performance of that assessment. 43. C.F.R. 11.32(a)(2)(iii). An RP may contribute to an assessment in many ways. The nature and extent of such participation, however, is subject to substantial agency discretion. 43 C.F.R. 11.32(c). The final authority to make assessment and restoration determinations rests solely with the agency(ies) conducting the assessment. Agencies operating under State or local laws may exercise similar discretion, as appropriate.

MPI has been actively involved in the assessment process for this spill event. MPI has provided a substantial amount of data and other information bearing on the nature and extent of the spill's impacts on the river system, including data from sediment and benthic sampling and information from surveys undertaken to assess potential injuries to vegetation, fish, and other species within the system. This information has been considered by the Agencies in the development of this DARP/EA. In February 1998, the Agencies met with MPI representatives to invite and encourage a cooperative, restoration-focused approach to completing the damage assessment. Since that time, MPI has proposed assessment strategies and restoration options for consideration by the Agencies and has submitted comments on assessment data, methodologies, draft memoranda, draft analyses and draft estimates relating to injuries or losses of natural resources injuries being considered by the Agencies. MPI representatives have also participated on the Agencies' Restoration Subgroup, which coordinated the scoping, screening and evaluation of restoration alternatives for identified resource

injuries. The Agencies also used the Restoration Subgroup to coordinate the development of this DARP/EA, allowing MPI to review and comment on the document as it was being developed.

In addition to its participation in the assessment process, MPI submitted comments to the Agencies during the period for public review and comment on the Draft DARP/EA.

1.3 Public Participation

On October 7, 1998, the Agencies published a Public Notice in the <u>Tampa Tribune</u>, entitled "Notice of Intent to Perform Damage Assessment/Develop Restoration Plan for the "Mulberry Phosphates, Inc./Alafia River Spill of December 7, 1997". That notice sought input from the public on the restoration alternatives which should be considered in the development of this DARP/EA. The notice identified the spill event, the Agencies involved, the natural resources and resource services being considered in the assessment process, criteria developed for use to evaluate restoration actions within the assessment process, and the restoration options identified for consideration by the Agencies as of that date.

The Agencies received three submissions from the public as a result of this early notice. These submissions identified several candidate restoration projects, each of which was consistent with one or more of the restoration alternatives already identified by the Agencies for consideration in developing a DARP/EA. A list of potential projects identified during this scoping process and their relation to each restoration alternative considered in the Draft DARP/EA was provided in Appendix C of that document.

The Draft DARP/EA was released for public review and comment for 30 days on July 22, 1999. The Draft DARP/EA was the means by which the Agencies sought public comment on the analyses used to define and quantify the resource injuries and service losses which occurred as well as on the restoration actions which the Agencies proposed for use to compensate for those injuries and losses. Public review of the Draft DARP/EA is either permitted by or is consistent with all federal, state or local laws applicable to the process of assessing damages for this incident, including the regulations guiding natural resource damage assessments under CERCLA, 43 C.F.R. Part 11, the National Environmental Policy Act (NEPA) 42 U.S.C. §4371, et seq., and the regulations implementing NEPA at 40 C.F.R. Part 1500.

Comments received during the public comment period were considered by the Agencies prior to finalizing this DARP/EA. A summary of comments received and the Agencies' responses there to are included in Appendices D and E of this final DARP/EA.

1.4 NEPA Compliance

The development of the restoration plan within this DARP/EA is subject to NEPA, 42 U.S.C. §4321, et seq., and regulations guiding its implementation at 40 C.F.R. Part 1500. To comply with

NEPA and its implementing regulations, the development of the DARP/EA summarizes the current environmental setting, the purpose and need for the proposed restoration actions, alternative restoration actions, their applicability and environmental consequences, and provided for public participation in the decision process.

NOAA and DOI have reviewed this DARP/EA for consistency with NEPA requirements, and the impact of the identified restoration actions on the quality of the human environment. This review is contained in Section 6.0 of this DARP/EA.

1.5 Administrative Record

The Agencies have each maintained records documenting actions taken and information considered by the Agencies as they have proceeded with assessment and restoration planning activities for this incident. These records are available for review by interested members of the public. To access or view the records for each agency, interested persons should contact:

- < John Iliff NOAA Restoration Center 9721 Executive Center Dr. N., Suite 114 St. Petersburg, FL 33702 727-570-5391/Fax: 727-570-5390.
- < Sam Zamani Administrator, DEP Phosphate Management 3804 Coconut Palm Drive Tampa, FL 33619 813-744-6100, ext. 148/Fax: 813-744-6457
- < Chris Dunn Director, EPC Water Management Div. 1900 9th Avenue Tampa, FL 33605 813-272-5960/Fax: 813-272-5157
- < Joe King Polk County, Natural Resources Div. 4177 Ben Durrance Road Bartow, FL 941-534-7377/Fax: 941-534-7368

July 21, 2000

Final Alafia River Spill DARP/EA

< Erik L. Orsak Environmental Contaminants Specialist U.S. Fish and Wildlife Service 1510 North Decatur Boulevard Las Vegas, Nevada 89108 702-647-5230/Fax: 702-647-5231

Access to and copying of records of any agency are subject to all applicable laws and policies. This may include but is not limited to laws and policies relating to copying fees and the reproduction or use of any material which is copyrighted.

2.0 OVERVIEW OF THE DECEMBER 7, 1997 ALAFIA RIVER SPILL

2.1 Description of the December 7, 1997 Spill Incident

On December 7, 1997, a breach occurred in the wall of a phosphogypsum stack located at the MPI phosphoric acid/fertilizer production facility in Mulberry, Polk County, Florida. As a result of this breach, approximately 50-56 million gallons of acidic process water flowed from the top of the stack, overflowed return and collection systems associated with the stack, and flowed into and through Skinned Sapling Creek into the Alafia River. Over the course of the next week to 10 days, the volume of released process water traversed approximately 36 miles of the river to Tampa Bay. Information collected by the U.S. Environmental Protection Agency (EPA), DEP, and EPC indicates the released process water contained about 1.5% phosphoric acid, and exhibited a pH of approximately 2 standard units. The material released also contained or was comprised of one or more substances designated as hazardous under CERCLA, including phosphoric acid.

The released process water lowered the pH along 35 miles of the Alafia River to levels ranging from approximately 2.3 standard units in the upper, freshwater portion of the Alafia River to 3.0-4.0 standard units in the lower, 10 mile estuarine portion for several days. The released process water caused a fish kill in the Alafia River, readily observable injuries to shoreline and upland vegetation in some areas in Polk County, and injuries to other natural resources, including losses of resource services.

Response actions were coordinated and carried out by and between MPI, EPA, DEP, EPC and other agencies. These actions were sufficient to stop the source of the release, to monitor the movement of the released process water as it moved toward and into Tampa Bay from the spill site, to document the effects of the release on certain surface water quality parameters, to protect the public from potential risks associated with uses of the river during the spill event, and to allow some actions to try and minimize potential effects of the spill. These actions could not, however, prevent natural resource injuries and losses from occurring; likewise, these actions did not operate to restore or compensate for these injuries and losses.

2.2 Affected Environments: The Alafia River and Tampa Bay

This section provides brief descriptions of the physical and biological environments that may be affected by restoration actions, consistent with NEPA. The descriptions include environments affected or potentially affected by the spill and targeted for restoration activities. The physical environment includes the surface waters of the Alafia River, associated freshwater wetlands and estuarine habitats and surface waters and habitats in Tampa Bay. The biological environment includes a wide variety of fish, shellfish, wetland vegetation, birds and other organisms.

2.2.1 Physical Environments

<u>Alafia River</u>: Historically, the Alafia River watershed was once composed of a wide variety of upland and coastal habitats. Within the last century, many large tracts have been converted from natural land features to phosphate mines, predominantly in the easternmost portions of the watershed. A detailed study conducted in the early 1970s suggested that approximately 47% of the watershed had been developed at that time (Dames & Moore, 1975). By the early 1990s, over 91% of the watershed had been altered by human activities, with 74% of the watershed impacted by mining activities and approximately 17% developed for urban, suburban, commercial, industrial and agricultural uses.

The Alafia River flows east to west and originates from both lower Hillsborough County and western Polk County. The river is characterized by a main flowing river and two large tributaries, the North and South Prongs originating in the northeast and southeast portions of the watershed, respectively. Perennially flowing and intermittent tributaries to the Alafia River include: Skinned Sapling Creek, Buckhorn Creek, Turkey Creek, English Creek, Poley Creek, Thirtymile Creek, Sloman Branch, West Branch, Mizzelle Creek, Owens Creek, Halls Branch, Chito Branch, McCollough Branch, Fishhawk Creek, Coleman Hammock, Little Fishhawk Creek, Bell Creek, and Rice Creek. Additional freshwater flows originate from Lithia Springs, approximately 15 miles upstream, and from Buckhorn Springs, approximately 8 miles from the mouth of the Alafia River.

The Alafia River can be divided into four general sections or reaches: lower, middle, North Prong, and South Prong. The lower reaches of the Alafia River extend from the river's mouth at Tampa Bay to approximately five miles upstream where the river narrows and becomes less tidally influenced. Floodplain habitat along this section of the river has been developed largely into single family and estate homes; areas that remain are typically small, isolated fragments of forest and are used as municipal parks and recreation areas or are held under private ownership.

The middle reaches of the Alafia River extend from the confluence of the North and South Prongs downstream to the U.S. Highway 301 bridge. This segment is characterized by a relatively narrow river width and more extensive undeveloped floodplain habitats. The North Prong of the river extends northeasterly approximately 10 miles with several branching tributaries extending east and west. The South Prong extends approximately 25 miles south and then east after branching from the main river. The eastern portions of the South Prong have been heavily mined.

The river in the vicinity of the MPI facility, the site of the release, is a shallow, broad, freshwater marsh. The gypsum stack that failed rises about 100-115 feet above this marsh environment. Skinned Sapling Creek lies just south of the gypsum stack and flows west, connecting to the North Prong of the Alafia River.

<u>Tampa Bay</u>: Located on the west central coast of Florida, Tampa Bay is the State's largest open water estuary. This roughly y-shaped estuary covers almost 400 square miles and can be subdivided into 6 named bays (Hillsborough, Old Tampa Bay, Middle Tampa Bay, Lower Tampa

Bay, Boca Ciega Bay, and Terra Ceia Bay). The Tampa Bay watershed spans 2,300 square miles of 6 different counties. Due to the large influence of rivers and tributaries that drain into the Tampa Bay, activities in its watershed directly affect the health of the Bay.

The Alafia River discharges into Hillsborough Bay, along with the Hillsborough and Palm River. Hillsborough Bay is surrounded by the City of Tampa and has a major port located in its northern reach.

2.2.2 Biological Environments

The Alafia River is a riverine ecosystem with numerous tributaries and springs discharging into the system. Small headwater streams provide habitat to organisms ranging from small invertebrates to game sized largemouth bass. Deepwater pools provide habitat to fish such as channel catfish. Low and medium salinity habitats created by the Alafia River and Hillsborough Bay provide critical nursery habitat at early stages of development for numerous commercial and recreational fish such as snook, red drum, mullet, tarpon, ladyfish, and spotted seatrout. Shellfish such as American oyster, blue crab, stone crab, and pink shrimp can be found in the estuarine parts of the river.

The freshwater wetlands and marshes of the upper Alafia River provide numerous resource services. Among the more commonly identified functions of these wetlands, are food web support, water quality maintenance, and wildlife habitat. Detritus produced by wetland vegetation provides food resources to microbial and protozoan communities which act as food for invertebrates, which in turn act as food for fish. Wetland vegetation enhances water quality through the removal and uptake of nitrogen and phosphorus, which at low levels serve as nutrients but in higher concentrations are pollutants. Wetland vegetation, whether herbaceous, shrub or canopy species, provides cover for wildlife which is an important habitat characteristic.

Nuisance vegetation characterizes much of the freshwater wetland landscape injured by the spill. Nuisance vegetation are species native to a region, but occurring in disproportionate abundance. Wetlands with nuisance species, such as those injured by the spill, do provide resource services, such as nutrient absorption/filtering. However, the level of some services, such as wildlife habitat, is low when compared to non-nuisance dominated wetlands.

The open waters of Tampa Bay provide important habitat for the estuarine dependant fish species, such as those mentioned above, as well as marine fish species, marine mammals (e.g., bottlenose dolphin and the West Indian Manatee) and seabirds. Other important habitats within Tampa and Hillsborough Bays are seagrass meadows, tidal marshes, salt barrens, oyster bars and mangrove forests.

Appendix A lists some of the important species occurring within Hillsborough and Polk Counties that may utilize the Alafia River watershed and/or Tampa Bay designated by either State or Federal laws as Threatened (T), Endangered (E), or Species of Special Concern (SSC). The Agencies did notdocumentinjury to any of the listed species presented in Appendix A.

2.2.3 Cultural Environment and Human Use

Tourism and recreation are major Florida industries. Water-related recreational activities common on the Alafia River and Tampa Bay, include recreational fishing, swimming, canoeing and other boating activities. These activities are important to tourists and permanent residents alike. Currently, there are well over 100,000 registered boaters in the Tampa Bay area (DEP, 1998a) and over 200 public and private marinas. Boat ramps and parks occur along the Alafia River. They include Williams, Riverview, Lithia Springs, and Alderman Ford parks and the Alafia River boat ramp. Recreational activities on the Alafia River and Tampa Bay also support businesses, such as bait shops and boat rental facilities. Several such businesses are sited along the Alafia River.

Agriculture, boat building, and port activities are some of the historic and current industries that have shaped Tampa Bay. Tampa Bay is the largest port in Florida and the eleventh largest port in the United States (Tampa Port Authority, 1999). It supports important industries, such as phosphate mining, by providing affordable bulk transportation. Phosphate and related products comprises 49% of all Tampa Bay exports (Tampa Port Authority, 1997). Now, as in the past, fishing plays an important role in Tampa Bay, with commercial fish and shellfish landings in Hillsborough County at 3,519,912 pounds during 1997 (Bureau of Economic and Business Research, 1997).

2.3 Summary of Preassessment Activities

Following the release on December 7, the Agencies acted quickly to identify and, to the extent practicable, coordinate activities to collect data and other ephemeral information which would be needed to document the spill and assess its potential to adversely affect natural resources. These efforts took into account investigations being undertaken by MPI, EPA and DEP as part of the spill response, natural resources at risk, preexisting monitoring programs for resources of concern, and the different capabilities, human resources and expertise of the agencies investigating the resource injuries. In coordinating and initiating investigations of potential natural resource injuries, the Agencies faced significant time, resource and logistic considerations due to the nature of the event. As a result, a number of different agencies and MPI were sources of information which the Agencies considered in the investigation of natural resource injuries. Relevant activities included:

- < Documentation of the spill and its movement through the Alafia River,
- < Surface water sampling to assess injury to surface waters and to document pathways of resource exposure,
- < Visual surveys to identify and assess resource mortalities,
- < Supplementation of state monitoring program to identify and assist in assessing small fish mortalities,
- < Benthic sampling to evaluate potential effects to benthic communities,
- < Ground reconnaissance, systematic field sampling and aerial photographic surveys to assess impacts to shoreline, wetland and upland vegetation.

Further details and results of these investigations for specific natural resources are presented in Sections 3.0 and 4.0.

2.4 Natural Resources and Resource Services Injured

Based on information provided by preassessment investigations, the Agencies have identified five types of natural resource injuries or losses warranting further assessment consideration in developing this DARP/EA:

1) <u>Freshwater Wetlands</u>: Approximately 377 acres of wetland vegetation situated between the site of the release and the Keysville Bridge experienced some observable die-off as a result of contact with the acidic process water release. The die-off of vegetation represents a loss of associated ecological services, until the areas recover to pre-spill conditions.

2) <u>Fish, Crab, and Shrimp</u>: The spill-induced acidity in the surface waters of the river caused an instantaneous fish, crab, and shrimp kill in the river. The fish, crab, and shrimp kill also represent a corresponding loss of future production for affected species.

3) <u>Surface Water</u>: The release demonstrably injured the physical and chemical quality of the surface waters of the Alafia River. It substantially reduced pH in the river to levels below water quality criteria established under both state and federal law for the support of aquatic life and recreation. The release also added nutrients, such as phosphorus and nitrogen, in amounts sufficient to cause or contribute to an imbalance in the natural populations of aquatic flora and fauna, particularly in phytoplankton in the surface waters of the Alafia River and portions of Tampa Bay for several months, contrary to a narrative water quality criterion established under State law.

4) <u>Freshwater Benthic Invertebrates</u> - When compared to control and background stations, sampling stations downstream from the spill site demonstrated reduced benthic species abundance and diversity after the spill. This evidences an injury to freshwater benthic communities.

5) <u>Oysters and Mussels</u> - Following the spill, EPC conducted surveys of two created oyster reefs in the lower Alafia River and found approximately 30% mortality on one of these reefs. EPC also observed and documented through photographs that the mussel population that had been growing on the I-75 bridge pilings was also dead after the spill.

2.5 Natural Resources and Resource Services with Significant Potential for Injury

The Agencies also identified two types of natural resources or resource services with a significant potential for injury or loss due to the spill:

1) <u>Birds</u> - Following the spill, FWS personnel investigated the potential for direct or indirect injuries to bird species. This included a search of historical wildlife data, GIS database analysis, and consultation with FDEP, Florida Game and Freshwater Fish Commission (FGFC) and National

Audubon Society (NAS) personnel on species within or using the spill area and the potential for adverse impacts. FWS biologists also conducted an inspection of the spill area in January 1998. GIS data confirmed the presence of several bird colonies throughout the Alafia river corridor, including nesting sites for the bald eagle and osprey. Further, over 25 avian species were confirmed using the area between U.S. Hwy. 301 and the mouth of Tampa Bay during the field inspection.

Although no bird mortalities were observed, significant losses of fish and shellfish, the avian food base, were readily observed and documented. This loss of prey items provides a substantive basis for concern that the spill may have indirectly injured birds, in particular, by causing a loss of bird productivity for the 1998 breeding season, and diminishing future reproductive success and survival through the non-breeding season.

2) <u>Lost Use of Fish for Recreation</u> - Although preassessment information bearing on the potential for spill-related recreational fishing losses was limited, the fish kill caused by the spill was sufficient to indicate a potential for recreational fishing losses. Recreational fishing activity is linked to or affected by the availability and abundance of fish stocks. With the death of large numbers of fish, particularly recreationally important fish as were documented in this fish kill, there is a corresponding lost opportunity to use those fish for recreational fishing. Recreational fishing activity may decline or the quality of the recreational fishing experience may decrease as a result.

For each of these potential injuries, additional investigations or studies would have been necessary to assess and quantify the losses. For reasons explained later in this DARP/EA, the Agencies elected not to proceed with additional investigations or studies for these potential injuries. As an alternative, however, the Agencies sought to develop a restoration plan which would compensate for the documented natural resource injuries while also maximizing benefits to birds and recreational fishing. This strategy recognized that restoration actions available to compensate for documented injuries are likely, de facto, to effectively also compensate for any recreational fishing losses or indirect injuries to birds that may have occurred, based on the circumstances of the event and the period for exposure or effects. Accordingly, these potential injuries were considered in developing this DARP/EA.

2.6 Natural Resources With No Documented Injuries

As part of the preassessment process, the Agencies also considered the potential for the following additional injuries to natural resources or resource services, with the following results:

1) <u>Estuarine Benthic Invertebrates</u> - The Agencies compared pre- and post-spill sampling data bearing on the abundance and diversity of benthic communities in estuarine portions of the river. Unlike the comparisons for freshwater areas, however, the results here were inconclusive as differences in pre- and post-spill data were generally consistent with "normal" seasonal variability or salinity changes following significant rainfall, like that occurring in December 1997 before the post-spill sampling. With inconclusive preliminary data, the Agencies believed further study of potential injuries to estuarine benthos was not justified. This judgment also recognized that ecological benefits

to estuarine benthos would accrue from the types of restoration actions which would be considered to compensate for other injuries, such as for the fish losses.

2) Lost Use of Surface Waters for Recreational Boating - The Agencies conducted a preliminary assessment of potential recreational boating losses in the Alafia River. Based on the available data, the Agencies were unable to reliably identify any recreational boating losses which could be attributable to the spill, largely due to the limited time frame within which spill-related boating losses could have occurred and the rainy conditions which existed during that same period. Weather conditions were sufficient alone to have resulted in decreased boating during much of the spill period. Although the Agencies could have obtained additional data through surveys, interviews, etc., implementation of these methodologies represented a significant further expense. Given that there was little potential for recreational boating losses attributable to the spill, the Agencies judged that further action or cost to assess such losses unwarranted.

3.0 ASSESSMENT PLAN FOR QUANTIFIED INJURY CATEGORIES

3.1 Freshwater Wetlands

3.1.1 Overview of Preassessment Activities and Findings

To assess potential effects on wetland vegetation in freshwater segments of the Alafia River, biologists from DEP's Bureau of Mine Reclamation (BOMR) conducted a ground reconnaissance on December 19, 1997 and a helicopter overflight on December 23. Their ground reconnaissance covered from Lithia Springs upstream to the spill site in Mulberry. BOMR biologists found little evidence of injury to vegetation at Lithia Springs and Alderman Ford Park in Hillsborough County. Therefore, the assessment focused on impacted areas in Polk County. Injury to freshwater vegetation, notably die-off, was apparent in the vicinity of the bridge on Nichols Road, indicating that adverse effects could extend as far as ten miles downstream from the spill site. The helicopter overflight confirmed that observable vegetative losses did not extend beyond the Keysville bridge. During the overflight, BOMR biologists also discovered that the spill had overflowed river banks into surrounding floodplains.

Following this preliminary work, BOMR biologists undertook activities to document the size of the areas showing injury, the composition of vegetation in those areas, and the nature of the losses which occurred. This work (Williges et al., 1998) had two primary components - remote sensing to estimate the total acres of injured vegetation, and systematic field sampling to provide information on species composition, abundance, and percent cover within the injured areas.

<u>Remote Sensing</u>: An aerial photographic survey of the Alafia River, from its mouth at Tampa Bay to State Road 37 (near Mulberry), was conducted on January 31, 1998. The survey was completed on February 17, 1998, in an overflight covering Skinned Sapling Creek. The survey produced both true color and infrared false color 10" by 10" prints (scale 10" = 400'). Injured areas were delineated by tracing the distinctive green or gray-white areas, the signature colors for unhealthy vegetation, on transparencies overlaid upon the prints. Areas delineated using plant signatures on the infrared prints were cross-checked with areas delineated on the true color prints. A digital planimeter was used to calculate the area of the traced signatures. The average of three planimeter tracings was used to derive an acre estimate of injured vegetation.

As delineated by this method, the area of injured vegetation totaled 377 acres. All injured acres were located in Polk County. The total acres of vegetation losses reflected two primary areas of injury - 227 acres between the spill site and Skinned Sapling Creek, and 150 acres of vegetation affected downstream near Nichols bridge. Wetlands vegetation at both sites included primrose willow, cattail, elderberry, and dog-fennel.

<u>Systematic Field Sampling</u>: BOMR engaged in systematic field sampling between January 26, 1998 and March 5, 1998 to characterize vegetation in the areas injured, including species

abundance and cover. A systematic sampling approach, i.e., where stations were placed approximately an equal distance apart, was used; true random sampling or stratified random sampling was not possible, as many portions of the river were either impenetrable or not accessed efficiently. Twelve sampling stations, stations 1 - 12, were established between Keysville bridge and Skinned Sapling Creek. Stations 13 and 14 were established on Skinned Sapling Creek upstream from the North Prong confluence. Three control sites were established on non-impacted portions of the river: station 15 on English Creek, a tributary of the North Prong; station 16 on the North Prong but upstream from Skinned Sapling Creek and south of the confluence of Skinned Sapling Creek and the North Prong; and station 17 was on the South Prong. Stations 10 - 13 were located within the 227-acre area of impact. Stations 5 - 7 fell within the 150-acre area. Although vegetative damage at some downstream stations was not expected, these sites were monitored for plant stress that was not readily apparent, but might manifest itself over time.

Plant species present at each station were identified and stratified by cover classification. The categories were ground cover, shrubs, woody vines, subcanopy, and canopy. The mean cover (percent of sample area) dead and alive was visually estimated for each species within a cover category. The methods were modified from work done by others and summarized in Kent and Coker (1992). In addition, a species diversity index, the Shannon-Wiener index, was calculated for each cover class at all stations.

3.1.2 Determination of Injury

The Agencies have determined that substantial areas of wetland vegetation were exposed to acidic surface waters as a result of the spill and experienced a readily observable dieoff as a result. Pre-spill, these freshwater wetland areas were largely populated by species such as primrose willow and cattail. Although often considered invasive or nuisance plants, these species still function to provide ecological services, including habitat for fish and wildlife and nutrient uptake and surface water improvement. These areas also provide some degree of biological diversity in the ecosystem. The loss of such vegetative services due to the die-off will continue until vegetation regrows to pre-spill levels. The reduction in vegetation resources and/or services due to the immediate die-off and the continuation of those losses, through time, until vegetative regrowth to pre-spill levels, comprises the full injury to freshwater wetlands caused by the spill.

3.1.3 Assessment Method

The BOMR report (Williges et al., 1998) on vegetative impacts provides the basis for the injury assessment. Data and other information within that report provide a reasonable estimate of the acres of wetland vegetation injured by the spill and are, for the most part, adequate to characterize the types of vegetative resources and services lost, consistent with assessmentneeds. To complete the assessment of injury to freshwater vegetation, the Agencies plan to use a Habitat Equivalency Analysis (HEA). HEA is a methodology that facilitates a restorationbased approach to defining compensation for natural resource losses, as it estimates the acres of habitat required to functionally replace ecological service losses, according to a technicallystructured formula. HEA is appropriate for use where service losses are primarily ecological and the creation of habitats or services like those injured or lost is technically feasible. The BOMR work provides data and other information that can be used to support application of a HEA to complete the quantification of vegetative services losses and to estimate the corresponding scale of replacement acreage.

The Agencies considered a number of functions provided by the lost vegetation, including nutrient uptake, habitat, and habitat diversity, in order to quantify vegetative service losses within a HEA framework. The vegetated cover dead (as a percentage of total cover) was used to approximate the injuries to these functions.

The injury area consisted of five classes of vegetation – ground cover, shrubs, woody vines, subcanopy, and canopy. The Agencies separated the classes into three groups – one comprised of the first three classes referred to collectively as "ground cover", and the other two comprised of the subcanopy and canopy classes. Subcanopy species are those that are less than four inches in diameter at breast height, which also includes canopy willow species. The canopy class only includes mature hardwood species.

The area of total impact, as estimated by the 1998 BOMR report, was 377 acres; 227 acres – Area A – were impacted near Mulberry at Highway 37, and 150 acres – Area B – were impacted near the Agrifos property downstream of Nichols Bridge. Based on fieldwork by BOMR staff, the Agencies estimated the area of injury to ground cover, subcanopy, and canopy in injury Areas A and B. Of the 227 acres of impact in Area A, 185.5 acres were ground cover, 34.25 acres included subcanopy, and 7.25 acres were mature hardwoods (or canopy). The 150 acre area – Area B – included impacts to 129.8 acres of ground cover vegetation, 19.5 acres of subcanopy vegetation, and 0.7 acres of mature hardwoods.

The injury will be calculated for ground cover, subcanopy, and canopy in Area A and Area B. The measure of injury is the average dead cover (as a percent of total cover) in each area and vegetation class. Within the HEA framework, lost vegetation would be quantified in acre-year units, where an acre-year is the flow of vegetation services from an acre of vegetation in one year.

The HEA methodology also takes into account the time it takes injured habitats to recover and created or restored habitats to reach full maturity. BOMR undertook limited field work early in 1999 to help assess the injury to vegetation and its recovery over time. Based on this information, scientific literature, technical expertise and judgment, the Agencies expect the injured ground cover to return to pre-spill conditions in two years, with recovery beginning in

1998 and assumed to follow a linear path. The subcanopy injuries (includes impacts to all willow species) are expected to recover in five years, with recovery beginning in 1998 and assumed to follow a linear path. The canopy injuries, which are injuries to the mature hardwoods, are expected to recover in twenty years, also with recovery beginning in 1998 and following a linear path.

3.2 Fish, Crab, and Shrimp

3.2.1 Overview of Preassessment Activities and Findings

Preassessment data gathering focused on the instantaneous fish kill (including blue crab and pink shrimp) which resulted from exposure to the spill-induced acidity in the river. Biologists representing both the Agencies and MPI conducted sampling in the lower, tidallyinfluenced portion of the Alafia River December 11 through 14, 1997. These sampling efforts were initiated to collect ephemeral data necessary to estimate the magnitude and extent of the fish kill. All sampling efforts were conducted within the tidally-influenced portion of the river, from the mouth of the river to river km ~16. Three types of data were collected: (1) smaller animal seine and trawl data, (2) larger animal visual survey data, and (3) larger animal clean-up data.

<u>Seine and Trawl Sampling</u>: Smaller animal data was collected by DEP's Florida Marine Research Institute, Fisheries-Independent Monitoring Program (DEP/FIM) using methods consistent with an existing seine and trawl sampling program. That program has historically used small-mesh seines and trawl data to assess juvenile populations of larger species and juvenile-to-adult populations of smaller species (< 8 cm total length), and is a source of historic data on small animal species composition and abundance in the Alafia River.

DEP/FIM implemented supplementary sampling on December 12, 1997 after the plume of low pH passed through river segments 1 through 4, segments historically sampled in the DEP monitoring program. A stratified random sampling design was used for sample site selection. The seine stratum included shoreline areas with water depths less than 1.8 m, assumed to be representative of the shoreline community. The trawl stratum included non-shoreline areas with water depths greater than 1.0 meter, assumed to be representative of the river channel community. All fish were identified to the lowest practical taxonomic level and counted, and representative length frequencies were recorded. DEP/FIM's regular monthly sampling in these same segments resumed the week of December 17, 1997.

<u>Visual Surveys</u>: Larger animal visual surveys were used to collect data on larger animal (>8 cm total length) mortalities. These surveys sampled floating and beached specimens in the tidally-influenced segments of the river following the American Fisheries Society (AFS) visual survey protocols (AFS 1992) for the estimation of fish kills. In these surveys, dead fish observed in randomly selected areas are counted and measured; these counts are then expanded over the entire affected area to provide an estimate of the total number of large dead fish present in the

study area. In this assessment, the lower Alafia was divided into 6 segments, and each segment was divided into countable units, or transects. A total of 40 transects were counted in the lower portion of the river. Expansion factors were derived from the area covered by the surveyors in a given river segment, relative to the total area in that segment. The visual surveys were conducted by DEP/FIM, Mote Environmental Services (Mote) under contract to NOAA, FGFC, as well as Langford Aquatics and Environmental Services and Permitting, Inc. (ESP) under contract to MPI. All visual surveys counts were conducted between December 11 and 14, 1997, near the time the low pH plume passed through the study area.

<u>Larger Animal Clean-up Data</u>: Larger animal clean-up data was provided by FGFC based on their examination of the dead fish removed from the river by Southern Waste Services, Inc. (SWS), under contract to MPI. The total weight of all dead fish removed from the river by SWS was documented; data on species composition, numbers, length frequencies and average weight was also recorded by FGFC for a subsample of the dead fish.

The data from these three preassessment activities were compiled and used by DEP's FMRI to estimate mortalities for both smaller and larger animals. The data and the methods used by FMRI to generate those estimates are presented in detail in a report entitled "Assessment of Fish, Blue Crab, and Pink Shrimp Mortality in the Tidal Portion of the Alafia River Following the December 1997 Process Water Spill" (December 10, 1998). Those estimates are:

Larger fish killed - 72,900

Smaller fish and shellfish killed - 1,244,800 (mean)

The estimate of larger fish killed is the sum of two estimates - (1) the number of dead fish present in the surveyed portion of the river, as calculated using the visual survey data following AFS methods for estimating fish kills, plus (2) the number of additional dead fish removed from the river by SWS, as calculated using the larger fish clean-up data provided by FGFC. These estimates were 57,900 and 15,000, respectively.

The estimate of smaller fish, blue crab and pink shrimp killed was derived from consideration of the seine and trawl data on smaller animals, using an "observed mortality method". This method estimates the population of dead animals in the lower portion of the river sampled, based on data gathered from seine and trawl data on December 12, and is calculated as the number of each species collected per area sampled (e.g., catch per unit effort reported as number/m²). The mean population estimate for dead animals (following stratified random sampling) was then calculated following Snedecor and Cochran (1967). Lower and upper mortality estimates for the observed mortality method were calculated by either subtracting (for lower estimate) or adding (for upper estimate) the standard error to the mean dead-animal population estimates. Lower, mean and upper dead animal population estimates were multiplied by the total area of the segments used in the analysis to estimate the total

number of small dead animals in the lower portion of the river. The data and the methods used by FMRI to calculate these estimates are presented in detail in the DEP/FMRI report dated December 10, 1998.

The DEP/FMRI report includes preliminary post spill analysis (January and February 1998) from FIM's regular monthly seine and trawl sampling bearing on the recovery of small and juvenile species in the river. Some recovery was evident by January-February 1998, but the populations of numerically dominant and ecologically important planktivores (small schooling plankton-feeding fish), such as bay anchovies, remained depressed. Although interpretation of recovery patterns for some species was complicated by interannual differences in abundance, most species normally abundant in January-February appeared to be at normal or near-normal numbers, and other species which normally recruit during that period were present in large numbers.

3.2.2 Early Restoration Action

In April 1998, the Agencies were notified by DEP of the availability of a limited number of juvenile snook suitable for potential release into the Alafia River. The fish had been spawned at the DEP's Stock Enhancement Research Facility from brood stock captured in the Alafia River. The fish were part of a growth and nutrition study at Harbor Branch Oceanographic Institute Inc. in Fort Pierce, Florida and became eligible for release when the study ended. Applicable DEP policy required that the fish be returned to their waters of origin, however, funding necessary to return the fish to the Alafia River had not been identified.

The Agencies considered whether to approve and fund the release of these fish into the Alafia River as an early restoration action to address the impacts of the spill. The Agencies approved this early action after weighing many factors, including the relationship of the proposed action to injuries to fish caused by this spill, restoration objectives for fishery losses, the feasibility and cost of the proposal, and the importance of snook as a recreational fish. The fish had an average length of greater than 10", a preferable size for release because larger fish generally have increased survival rates. Snook of similar size were among those killed by the spill. Therefore, the release of these fish represented a feasible, direct replacement of snook, capable of partially offsetting the spill's kill of similar-sized fish. The early release of these snook also represented an opportunity for additional future fish production, which the Agencies believed could assist in reducing the future production losses attributable to the fish kill. The proposal could also be implemented at very little cost.

Following approval by the Agencies, DEP assumed the cost of implementing this early, primary restoration action, i.e., the cost of transporting, acclimating, and releasing these fish back into the Alafia River, as part of the restoration plan for this incident. The action was implemented on May 22, 1998 after the fish passed a health certification and were tagged. A total of 154 snook averaging 11" inches in length were released into the Alafia River at six

different locations between the I-75 bridge and the mouth of the river and six locations east of the I-75 bridge.

3.2.3 Determination of Injury

Significant numbers of both large and small fish species, blue crab and pink shrimp died as a result of direct exposure to spill-induced acidity in the surface waters of the river. Of the species killed, bay anchovy, menidia, hogchoker and sand seatrout comprised approximately 95% of the smaller fish and juvenile adult species, and striped mojarra, gar, sheepshead, and hardhead catfish comprised about 70% of the larger fish species. Other economically important species, such as bullhead catfish, red drum, blue crab, sunfish, pink shrimp, and common snook, were also killed. The future biological production of the animals killed is also lost. The injury to fish, blue crab and pink shrimp is defined by both the immediate loss of animals directly killed by the spill and the interim loss of the biological productivity of those dead animals. The lost opportunity to use these fish for recreational fishing is considered later in Section 4.2.

3.2.4 Assessment Method

The DEP/FMRI report on fish, blue crab, and pink shrimp injury provides the basis for an assessment of direct mortalities documented in the tidally-influenced portion of the Alafia River. This report received extensive review by the Agencies and by MPI prior to its finalization. MPI in particular was very critical of data and methods used to produce the estimates and of the reliability of the resulting estimates. In response to MPI's comments, the Agencies conducted a thorough review of the data and methods used in the report. Based on that review, some changes were incorporated in the final report but, in the end, the Agencies disagree with MPI that the techniques used by FMRI to estimate these fishery losses were substantially flawed or resulted in estimates that were unusable for damage assessment purposes. Accordingly, estimates of the direct fish kill contained in the FMRI report are being utilized in this assessment.

The loss of future production and recruitment associated with the estimates of the direct kill are unlikely to be large enough to significantly alter future populations in the river, given the nature of this riverine environment. The Agencies believe that production from unaffected organisms and recruitment from unimpacted tributaries, upstream areas, and Tampa Bay will provide sufficient egg and young production to sustain populations of fish injured by the spill. Under these circumstances, further studies to assess an impairment of reproductive capacity are not required. The loss of future productivity associated with the estimates of direct kill can be calculated based on information contained in the biological database in the CERCLA type A model, Natural Resource Damage Assessment Model for Coastal and Marine Environments (NRDAM/CME, Version 2.5, French, et. al. 1996), other information augmenting the database for species killed by this spill, and the population model component in the NRDAM/CME model to predict the duration of such losses. Under this approach, the total kill estimated for

each species, the size of those animals, and natural and fishing mortality estimates are used to define the numbers killed by age class and species, and the NRDAM/CME computes the normal production (as net somatic growth) expected from the killed organisms, and sums those losses over predicted life spans. Losses in future years are discounted 3% annually to yield a total estimate for the interim losses in present value terms.

To complete the assessment, the direct kill and the foregone production will be quantified as the total biomass lost. Total biomass lost can be calculated using the number of fish killed by age class and species (as gathered during the preassessment phase), standard fisheries equations of length versus age and weight versus length, and survival, mortality and growth rate determinations. This approach facilitates restoration planning as, using HEA, restoration can be scaled to replace the total biomass lost due to the spill.

The number of snook released in the early restoration action must be subtracted from the number of similar-sized snook included in the larger fish kill estimate before performing the above future production loss and total biomass calculations. This is necessary to ensure that, in calculating the biomass which will be used to scale restoration, neither the fish restored to the river nor future production associated with those fish are included. This step avoids overcompensating for remaining fish losses in scaling further restoration actions in this assessment process.

Although this assessment approach relies on NRDAM/CME's predictions to assess the duration of fishery losses, DEP/FIM's regular sampling of the estuarine portion under its historic sampling program has continued and is an ongoing source of information for use in monitoring the recovery of small species populations and juvenile populations of larger species post-spill.

3.3 Surface Water

3.3.1 Overview of Preassessment Activities and Findings

Data collection efforts to assess and monitor the spill's immediate effects on surface water quality in the Alafia River began the day after the spill, December 8, 1997 and continued until December 18, 1997. Water quality data was collected by EPC, FDEP, EPA, NOAA and MPI. Surface water samples were collected from a variety of stations by boat and from bridges. Samples were collected and results compared to historic long-term water quality data collected by EPC from five (5) sampling stations along the Alafia River. EPC measures approximately 35 water quality parameters as part of their established long-term monitoring program, including for pH, phosphorus and nitrogen. EPC has presented their data and other information used to evaluate surface waters impacts during the preassessment phase in the report entitled "Mulberry Phosphates Inc. - December 1997 Acid Spill, Water Quality Impacts on Alafia River and Tampa Bay, May 29, 1998".

<u>Monitoring for pH</u>: Monitoring for pH occurred at fourteen (14) stations along the river. Samples were taken starting on the day of the spill, December 7, 1997, and continued for the next eleven days until December 18, 1997. The station locations and numbers, dates of sampling, detected pH levels, and collecting agency are presented in Appendix B.

As the data in Appendix B shows, on December 8, the day after the spill, surface water samples had a pH of 2.8 at the Keysville Bridge location and of 7.2 at Alderman Ford Park (usual pH at these locations is about 7.2 - 7.4). On December 9, surface water pH was found to be at or below 3.1 from the Keysville Bridge downstream to Bell Shoals. The pH at Hwy. 301 was considered normal, a 7.6, that day. On December 10, surface water pH was below 4.0 from Alderman Ford Park downstream to Hwy. 301. As of December 11, approximately 27 miles of the river had surface waters with a pH less than 6.0. Except for the section of river upstream of Nichols Bridge, pH measurements in the Alafia River had returned to levels above 6.0 by December 16, 1997. However, a few sampling stations near the site of the spill, at the Highway 37 bridge in the City of Mulberry and at Nichols Bridge, continued to have pH levels below 6.0 through December 19, 1997. Preassessment sampling efforts by the Agencies ended on January 7, 1998.

The above pH data also show the progress of the released process water as it moved downstream in the Alafia River as a plume. By December 15, the plume had reached the mouth of the Alafia and entered Tampa Bay, where the higher alkalinity of bay waters would have neutralized any remaining acidity.

<u>Monitoring for Nitrogen and Phosphorus</u>: In addition to abnormally low pH levels, EPC found extremely high concentrations of nitrogen and phosphorus in the river and in Tampa Bay following the spill. This is based on analysis of EPC's 24 year database from routine monitoring of surface water quality in both the Alafia River and Tampa Bay. During the spill event, nitrogen reached a maximum concentration of 46.26 mg/l in the river, compared to a previous 3 year recorded high of 3.23 mg/l. Similarly, during the spill event, phosphorus in the Alafia reached a maximum concentration of 234.83mg/l, whereas, in the 3 years prior to the spill the highest recorded phosphorus concentration was 24.86 mg/l.

The Tampa Bay Estuary program has researched and documented the role of nitrogen in the health of Tampa Bay (TBEP 1996) and has established goals for limiting nitrogen loading. Nitrogen in small amounts is a nutrient but in high concentrations is responsible for producing excessive algal growth, reducing oxygen and light levels in the Tampa Bay. High populations of algae or phytoplankton reduces sunlight penetration in the water column which is essential to maintenance and growth of submerged aquatic vegetation, such as sea-grasses. Although phosphorus is also a nutrient for algal growth, nitrogen is considered the limiting or controlling nutrient in Tampa Bay.

On June 18, 1998 the EPA, acting under the Clean Water Act, approved the DEP's proposed Total Maximum Daily Loads (TMDLs) for nitrogen in Old Tampa Bay, Hillsborough Bay, Middle Tampa Bay, and Lower Tampa Bay based on work conducted for the Tampa Bay Estuary Program (EPA, 1998) (Zarbock et al., 1994, Janicki et al., 1996, Zarbock, et al., 1996a, Zarbock, et al., 1996b). The TMDLs for nitrogen were identified to maintain all applicable state water quality standards. For Hillsborough Bay, into which the Alafia River discharges, the TMDL was approved at 7951 lbs/day or 1451 tons per year (EPA, 1998). The nitrogen released during the spill as a single discharge, 656775 lbs. or 328.4 tons, is approximately 22.6% of the approved yearly TMDL for Hillsborough Bay (1451 tons) or nearly 11% of all the approved yearly TMDLs for Tampa Bay (3085 tons).

In the first four months following the spill (January, February, March and April 1998), levels of Chlorophyll *a*, an indirect measure of microscopic algae present in the water column, revealed the presence of atypical concentrations of microscopic algae in the Alafia River and Tampa Bay, compared to monthly averages over the last 24 years. These concentrations were reported when levels are historically the lowest (Cardinale, 1998) Chlorophyll *a* concentrations began to return to normal levels in May, 1998. These data indicate the spill caused or significantly contributed to an imbalance in the natural populations of aquatic flora in the Alafia River and Tampa Bay.

3.3.2 Determination of Injury

The spill changed the physical and chemical quality of the surface waters of the Alafia River and Tampa Bay. The release of the acidic process water resulted in acidity, measured as standard units of pH below 7.0, in the river. Measured pH levels in the river fell well below levels allowable under Florida law. The applicable state water quality criterion for pH is established by Florida Administrative Code (F.A.C.), Rule 62.302.53052)(c), which provides that pH shall not vary more than one unit above or below natural background and, in no case, be depressed below 6.0 units. Data collected during the spill event show that surface water pH in the Alafia River fell below 6.0 for up to eleven (11) days as a result of the spill. Further, the spill-induced acidity in the river was sufficient to cause acute injuries to other natural resources upon exposure and, in fact, injured wetland vegetation, as discussed in Section 3.1, and caused an instantaneous kill of fish, blue crab, and pink shrimp in the river, as discussed in Section 3.2.

The spill also caused or contributed to an imbalance in the natural populations of aquatic flora in Alafia River and Tampa Bay, contrary to F.A.C. Rule 62-302.530(48)(b), by adding large amounts of phosphorus and nitrogen to the estuary. Evidence indicates these additions altered nutrient concentrations in that system and caused or contributed to a documented imbalance in algae concentrations within the Alafia River and Tampa Bay.

3.3.3 Assessment Method

The EPC report on water quality impacts provides the basis for the injury assessment. The report contains the relevant sampling data for both the Alafia River and Tampa Bay. All monitoring data can be found in Appendix 4-A of the EPC report.

The data identified in the report is sufficient to quantify the injury to surface water based on the alteration of pH. The nature and extent of the effect on pH and its relationship to the documented fish kill are identifiable from existing data. Available pH data also provides the basis for characterizing the recovery of surface waters from the spill-induced acidity as pH levels were showing improvement in most areas of the river by December 12, 1997. Further, the higher alkalinity in Tampa Bay would have facilitated recovery by acting to neutralize or buffer acidity in surface waters exiting the river, likely in a very short time.

The data identified in the report is also sufficient to characterize the nature and extent of the imbalance in aquatic flora resulting from the spill. This injury can be characterized in terms of the increased nutrient loading into the ecosystem attributable to the spill, using nitrogen as a metric. This approach will facilitate restoration planning as restoration actions can be scaled to offset this loading based on their ability to remove nitrogen from surface water over a project's lifespan. The approach is cost-effective as it can be implemented using available information, avoiding the need for complex or prolonged field studies to further quantify the temporal and spatial faunal imbalance caused by the release. Further, this approach scales the restoration for MPI's nitrogen contribution only, which avoids including any other unauthorized inputs of nitrogen that occurred at or near the time of the spill.

In assessing compensation for MPI's release, calculation of the amount of nitrogen from the spill is fairly simple and straightforward, based on the following formula¹:

Loading in pounds = (millions of gallons spilled)(mg/l of contaminant)(8.342)

Table 1 shows the nitrogen constituents and concentrations of typical process water and the estimates the total mass of nitrogen released. The Agencies used 50 million gallons as a conservative estimate to calculate the total loading in pounds.

¹ The formula includes a conversion factor of 8.342 that converts concentration (mg/l) to pounds (lb) when volume is in millions of gallons (gal) i.e., $8.342 = (3.785 \text{ l/gal}) * (2.204 \text{ x } 10^{-6} \text{ mg/lb}) * (1,000,000 \text{ gal})$

Parameter*	R ange (mg/l)*	Average	Estimated Loading in Pounds	Estimated Loading in Tons (short)
0-P04 as P	6000 to 10000	8000	3336800	1668.4
Ammonia as N	1000 to 2000	1500	625650	312.8
0 rganic N as N	50 to 100	75	31283	15.6
Total N			6569323	328.4

Table 1

* Composition of typical process water from DEP list of 46 parameters

Data from EPC's ongoing water quality monitoring program may be used to assess surface water recovery from this adverse condition. Relevant data from that program for January through May 1998 is noted in the EPC report and indicates Chlorophyll *a* concentrations were nearing normal levels in Tampa Bay by May of 1998, a preliminary indication of recovery. Data from EPC's ongoing monitoring program can be used to assess the duration of the injury and when recovery is complete.

3.4 Benthic Invertebrates

3.4.1 Overview of Preassessment Activities and Findings

EPC and DEP biologists conducted a preliminary investigation of the effects of the acid spill on the benthos of the Alafia River. Biological and chemical samples at stations in both the freshwater and estuarine portions of the river were collected December 17 to 19, 1997. DEP biologists focused on the potential for injury to benthos in the freshwater portion of the river. Their investigative strategy involved data collection necessary to allow comparisons of benthic abundance, diversity and community structure between spill-exposed and background/reference stations, with concurrent consideration of data on the physiochemical character of the overlying surface waters of the river.

A total of 7 stations were used in the field sampling, 5 potentially impacted sites and 2 background/reference stations. All stations were located in the Alafia River in eastern Polk and western Hillsborough counties, with the furthest downstream station being near the Keysville Bridge. At all 7, surface water samples were taken and analyzed for relevant physiochemical parameters, such as pH, dissolved oxygen, temperature, conductivity, total suspended and dissolved solids, fluoride, nitrogen, phosphorous, and five metals (aluminum, sodium, calcium, magnesium and potassium). At 4 of these stations (2 potentially impacted, 1 reference, and 1 background), relevant biological data was also collected, including total taxa, density/m, the

Shannon-Wiener Diversity Index², presence of EPT organisms³, and on the presence of environmentally sensitive invertebrates designated by the Florida Index⁴ (FI). Benthic community data for 3 replicate samples were combined at one of the potentially impacted stations.

EPC evaluated the potential for injury to freshwater benthos attributable to the spill by comparing the physiochemical data for overlying surface waters with information on the associated benthic abundance and community structure (Grabe, 1997). That data evaluation indicated that both benthic species abundance and diversity were reduced at stations downstream from the site of the release relative to reference and background stations. Despite differences between habitats at reference/background stations and stations sampled downstream, concurrent consideration of the surface water and biological data suggest the reduced abundance and diversity of freshwater benthos at spill-exposed stations are attributable to the spill, i.e., resulting from direct toxicity from the low pH waters, from toxicity associated with high levels of trace metals in the released process waters, or from toxicity associated with high levels of trace metals released from sediments following the interaction of sediments with the acidic process water. This data and evaluation are presented in a report prepared by DEP entitled ECOSUMMARY, A Report by the Surface Water Assessment and Monitoring Program (SWAMP), #98-002 (DEP, 1998).

3.4.2 Determination of Injury

Freshwater benthic communities exposed to the released process waters downstream of the spill site exhibited reduced abundance and species diversity 10 to 12 days following the spill. The injury to freshwater benthic resources includes both direct injuries attributable to spill-related toxicity as well as the reduction in benthic resource service as a food base for higher trophic levels. The injury persists until direct toxicity ceases and recruitment and recolonization returns the benthic community structure and function to pre-spill levels.

3.4.3 Assessment Method

Although DEP's preassessment data and evaluation indicate an injury to freshwater benthic communities occurred, additional information would be needed to fully quantify the injury and complete an assessment sufficient to support active restoration planning. This would

 $^{^2}$ Please refer to section 3.1.3 of this DARP/EA for description of the Shannon-Wiener Diversity Index.

³ Refers to Ephemeroptera, Plecoptera and Trichoptera; i.e. mayflies, stoneflies and caddisflies.

⁴ The Florida Index is a tolerance measure: The weighted sum of intolerant taxa, which are classified as 1 (least tolerant) or 2 (tolerant). $FI = 2^{*}(\# class 1 taxa) + 1^{*}(\# class 2 taxa)$.

include information on the types of benthic resources lost, the areal extent of losses, the magnitude of losses, the duration of the losses, and the form of their recovery.

A number of factors led the Agencies to conclude that further investigations to address these information needs were unwarranted. First, changes in benthic community structure in response to short-term changes in environmental conditions are often of short duration, as benthic recolonization and recruitment can occur rapidly. The circumstances of this incident are consistent with expectations of rapid recovery, even with a view to a reasonable worst-case scenario for benthic injury. Adverse conditions caused by the spill would likely be of short duration and opportunities for species immigration from upstream and non-impacted tributaries existed. Data from a DEP post-spill sampling effort (DEP, 1998) indicated that the most sensitive benthic organisms in estuarine areas were reappearing as quickly as three weeks after the source of the aquatic toxicity ended. Further, the Agencies recognized that interpretations of further data would be confounded to some extent by normal variability in benthic data as well as by effects from notable rainfall in December after the spill which also altered salinity and flow conditions in the river. The expense of a further study was also a concern, given the probable marginal utility of any additional data.

The Agencies also considered likely restoration objectives for benthic injuries. Given the strong likelihood of a rapid recovery to pre-spill conditions, additional restoration to address primary injuries would not be needed. In-kind compensation for any short-term, interim loss of benthic functions would accrue as a result of restoration actions undertaken to restore or compensate for lost freshwater wetland services. Consequently, the Agencies determined that additional site-specific studies to provide more detailed information for use in the assessment of benthic injuries were not justified.

Because the Agencies determined further action to assess freshwater benthic invertebrates injuries was notjustified, an injury-specific restoration plan for the loss of these resources is not included in this DARP/EA. However, the Agencies have sought to ensure that the restoration plan developed to compensate for other resource injuries in this DARP/EA is consistent with actions appropriate to address any interim losses of freshwater benthic invertebrates. This strategy is consistent with that adopted for Oyster and Mussel losses, described in Section 3.5, and potential bird injuries and recreational fishing losses, described in Sections 4.1 and 4.2, respectively.

3.5 Oysters and Mussels

3.5.1 Overview of Preassessment Activities and Findings

Visual observations, by EPC staff, of structures or shorelines in the estuarine portion of the river prior to the December 7, 1997 spill noted the presence of substantial populations of oysters and mussels. These populations were particularly abundant on structures and shoreline areas between Hwy. 41 and I-75. The total numbers and/or full areal extent of these biota, however, had not determined prior to the spill.

Two oyster habitat restoration projects had been implemented in the lower Alafia River prior to the spill. Both were undertaken as mitigation projects related to the Gardinier, Inc. (now Cargill Fertilizer, Inc.) phosphoric acid spill of May 1, 1988. The Alafia River Oyster Bar Restoration Demonstration Project was implemented in 1995. The Williams Park Pier Oyster Reef Project was a joint EPC/DEP effort built in 1996 to test the use of artificial substrate for the development and colonization of live oysters in the river. The locations of these reefs are noted in Figure 1. Since implementation, both projects have been the subject of periodic inspection and monitoring.

EPC inspected both reef sites following the spill (Cardinale, 1998). On January 14, 1998, EPC found no live oysters during a qualitative inspection of the Williams Park Pier oyster reef. A second, closer inspection of that reef on January 27, 1998 indicated some oysters had survived. On May 13, 1998, EPC conducted a quantitative inspection of that reef. Clusters of oysters from the reef areas under the pier were removed from their polyethylene tubes, sorted (live or dead), counted and the percentage of dead oysters estimated. Only oysters greater than about 1 inch were counted to ensure counts were limited to oysters which would have been present on the reef during the period of the spill (oysters under 1 inch may have recruited and developed after the spill). EPC estimated that over 33% of the oysters under the Williams Park pier were dead based on these counts. EPC did not note any oyster mortality in inspections of the Oyster Bar Project site (Ash & Cardinale, 1999).

On December 15, 1997, EPC staff observed that the mussels attached to the I-75 bridge pilings appeared to have been killed. Prior to the spill, these visible parts of the I-75 bridge pilings were densely populated with mussels.

The pH levels recorded during the spill event in the Alafia River, including at the Hwy 41 bridge, near the Williams Pier, and the effect of such low pH values on aquatic biota are previously described in this DARP/EA at Sections 3.1 and 3.2. This information is also part of the data used in evaluating the impact to oysters and mussels during the preassessment phase.

3.5.2 Determination of Injury

Both oyster and mussel mortalities were observed after the spill in areas of the lower Alafia River where acidic surface water conditions were documented and where exposure to acidic surface waters was acutely toxic to other aquatic species. Therefore, the evidence is sufficient to indicate the spill-induced acidity in the surface waters caused or contributed to observed mortalities of oysters and mussels. The presence of such mortalities at the Williams Park Pier reef site and on I-75 bridge pilings indicates that mortalities of oysters and mussels likely extended to populations at other locations upstream.

3.5.3 Assessment Method

Although available information indicates the spill caused or contributed to observed mortalities of oysters and mussels, that information is insufficient to quantify such losses. Pre-spill

observations and monitoring at the reef project sites provided a basis for investigating the effect of the spill on oysters but offer only limited information bearing on the general baseline health and population of oyster communities in the Alafia River. Additional information would be needed to define the distribution and likely abundance of pre-spill populations in the river as a basis for estimating post-spill impacts and to further define post-spill mortalities.

For a number of reasons, the Agencies concluded further work to address these needs was not warranted in this instance. Oyster and mussel populations typically will recruit and recover fairly quickly from temporary adverse changes in environmental conditions. Short-term recovery scenarios complicate the task of implementing investigations post-event which will adequately define or quantify losses and are an indication that interim losses associated with these mortalities may be relatively small. In the case of oysters and mussels, too, the heavy rains in the region following the spill are also relevant to understanding observed mortalities as this rainfall lowered salinity in the river to levels that may also have been sufficient to result in oyster and mussel mortalities. Where losses may be of short duration and additional work may yield inconclusive results, the Agencies felt the cost of additional assessment work was difficult to justify.

Figure 1 Approximate Locations of Created Oyster Reefs in Lower Alafia River

Likely restoration objectives for oysters and mussels were also considered. Primary restoration actions were considered unnecessary because populations were expected to return to baseline levels within a relatively short period of time. Further, restoration actions for other resource injuries were considered likely to also compensate for any short-term losses of these resources. Consequently, the Agencies determined that additional studies to support further assessment of the interim losses of oysters and mussels was also not required to meet restoration objectives for any spill-related losses.

Because the Agencies have determined further action to assess oyster and mussel losses is not justified, an injury-specific restoration plan for oysters and mussels is not included in this DARP/EA. However, the Agencies have sought to ensure that the restoration plans developed to compensate for other resource injuries in this DARP/EA are also appropriate to address any

interim losses of oysters and mussels. This strategy is consistent with that adopted for injuries to Freshwater Benthic Invertebrates, described in Section 3.4, and potential bird injuries and recreational fishing losses, described in Sections 4.1 and 4.2, respectively.

4.0 ASSESSMENT DETERMINATIONS FOR NON-QUANTIFIED INJURY CATEGORIES

4.1 Birds

4.1.1 Overview of Preassessment Activities and Findings

The FWS investigated the potential for spill-related injuries to bird species. The potential for injuries to migratory birds were a primary concern of these investigative activities. That investigation included a search of historical wildlife data, GIS database analysis, and consultation with DEP, FGFC and NAS personnel on species within or using the spill area and the potential for adverse effects. FWS biologists also conducted an inspection of the spill area in January 1998.

FWS confirmed that many bird species utilize the Alafia River corridor for nesting, feeding and/or resting. The list compiled by the FWS is presented in Table 2. These included migratory bird species such as raptors, seabirds, waterfowl, wading birds, and shorebirds. Over 25 avian species were witnessed using the area between U.S. Hwy. 301 and the mouth of Tampa Bay during the field inspection and the presence of several bird colonies in the Alafia river corridor, including nesting sites for the bald eagle and osprey, were identified from GIS data. Migratory bird rookeries known to be in the spill area were a focus of the FWS's investigation. Preliminary research by FWS staff found little available data from which to assess the baseline health and abundance of populations of birds in the spill area.

Double-crested cormorant	Red-breasted merganser	Tern spp.	Yellow-crowned night heron	
Wood stork	Turkey vulture	Belted kingfisher	Red-shouldered hawk	
Osprey	Least sandpiper	Foster's tern	Peeps (sandpipers, etc.)	
Brown pelican	Lesser scaup	Little blue heron	Various gull species	
Great egret	White pelican	Great blue heron	American oystercatcher	
Snowy egret	Tricolored heron	Reddish egret	Northern shoveler	
White ibis				

Table 2Birds Confirmed by FWS Within The Alafia River Corridor

No bird mortalities were observed or otherwise reported to agencies involved in investigation of the spill. Further, the FWS found no obvious effects to threatened or endangered avian species. Significant losses of fish, crab, and shrimp were, however, readily observed and documented by other agencies and MPI during the event. (See Section 3.2, Fish, Crab, and Shrimp). The loss of fishery resources represented a loss to the forage base upon which migratory birds depend for survival, growth, and reproduction. The fish kill caused by this spill occurred just prior to the 1998 bird breeding season, which typically occurs between February and July. Together with information on the magnitude of the fish kill, this fact increased the prospects for injury to migratory bird populations through a loss of productivity during the 1998 breeding

season. The FWS determined that additional studies, however, would be required to provide data necessary to confirm whether reproductive success was affected during the 1998 breeding season and to assess the nature and extent of resulting losses to migratory bird populations.

4.1.2 Assessment Determination

As noted above, preassessment investigations conducted by FWS indicated the potential for the spill to result in indirect injury to migratory birds. To confirm and quantify any such injury however, additional information would be required.

The FWS considered several strategies and methodologies for collecting appropriate data, including a study of nest abandonment rates for migratory species. In consulting with the NAS however, it was recognized that any decrease in nesting success identified in 1998 would be difficult to reliably attribute to the spill without study of other variables that may contribute to such losses. Such a study would be technically complex, add considerable cost, and take one to two years to complete. The opportunity for meaningful pre- and post-spill comparisons is also complicated by the limits of existing baseline data on avian populations along the Alafia river, increasing the chance that study results would be inconclusive. The additional time to complete the bird injury assessment would have greatly extended the time to complete the natural resource assessment for this spill event.

The FWS also considered the likely restoration objectives for birds, assuming losses of productivity occurred in 1998. A variety of restoration projects, such as surface water improvement or restoration of riverine habitat, would benefit migratory birds by increasing foraging success and accelerating recovery of populations to pre-spill conditions. Future reproduction can be enhanced through the creation or enhancement of habitats suitable for nesting migratory bird populations. Opportunities to benefit bird populations were inherent in restoration options available to address injuries to Freshwater Wetlands, Surface Waters and Fish, Crab, and Shrimp.

Because additional studies to assess bird injuries would be costly, potentially inconclusive, and greatly extend the time to complete the assessment process for this incident, and because restoration objectives for any bird injuries can be addressed through restoration actions to address other documented resource injuries, the FWS recommended no further studies to assess the potential injury to birds be undertaken. The Agencies concurred with that recommendation.

Since the Agencies determined further action to assess bird injuries was not justified, an injury-specific restoration plan for birds is not included in this DARP/EA. However, the Agencies have sought to ensure that the restoration plan developed to compensate for other resource injuries in this DARP/EA is also appropriate to address any potential interim injuries to birds. This strategy is similar to that which the Agencies adopted for injuries to Freshwater Benthic Invertebrates and Oysters and Mussels, described in Sections 3.4 and 3.5 respectively, and for potential recreational fishing losses, described in Section 4.2.

4.2 Recreational Fishing Losses

4.2.1 Overview of Preassessment Activities and Findings

Circumstances surrounding the spill, notably the surface water acidity, the resulting fish kill, and warnings reported in the news and posted at boating access points, suggested that recreational fishing activity could be adversely affected by reducing angler trips or by diminishing the value of trips taken due to reduced catch rates. NOAA's early activities focused on collecting data and information which could be used to assess whether spill-related recreational fishing losses occurred and, if so, to estimate those losses objectively. These efforts included a survey of bait and tackle shop owners along the Alafia River, consideration of data bearing on baseline fishing activity, and preliminary evaluations of this information.

NOAA contacted bait and tackle shop owners along the Alafia River to request information on sales receipts for months preceding and during the spill. Such information can be an indication of changes in levels of fishing activity. NOAA received records from some shop owners; others were unwilling to provide this information. Records received showed that reductions in bait sales of up to 70 percent did occur in December 1997, evidence that recreational fishing activity was, in fact, reduced during the spill period. The extent to which the spill event caused or contributed to the reduction could not isolated based on this information alone, however, as the Tampa Bay region experienced record levels of rainfall in December 1997, a circumstance that would also be expected to affect recreational fishing activity.

NOAA contacted many local and state resource management agencies and interest groups in an effort to locate data on baseline recreational fishing activity in the Alafia River. Two data sources were located. The FGFC, Division of Law Enforcement provided data, by month, on the number of recreational fishing boats (and other vessels by type) intercepted by its enforcement officers during patrols of the Alafia River from November 1997 through January 1998. An annual total for all vessel types and the number of hours patrolled for 1997 was also provided. The data for 1997 indicated that officers checked an average of 0.7 users per patrol hour and that roughly 30 percent of intercepted users were recreational fishermen. FMRI's Division of Marine Resources provided boat counts from a 1996 aerial survey of the Alafia River. That survey focused on the mouth of the river east to Interstate 75, an area representing about one-half of the estuarine part of the river. Overflights were conducted in two month waves, with three weekday and three weekend flights occurring per wave. For weekday flights, the highest number of recreational fishing boats reported was 9; the average was 2.6. For weekend flights, the highest number of boats was 4; the average was 1.4. This information provided a rough estimation of baseline recreational fishing levels.

NOAA also considered the Fish, Crab, and Shrimp injuries caused by the spill. These losses are relevant as recreational fishing is linked to and can be affected by changes in the availability and abundance of fish stocks. Where losses of fish occur, angler trips and the value of trips taken can be reduced because of reductions in catch rates. The greater the fishery losses, the greater the likelihood that such losses will occur. Several species of important recreational fish were killed as a result of this spill, including sheepshead, snook, and red drum. The investigations undertaken to

document and estimate the Fish, Crab, and Shrimp injuries caused by the spill are described in Section 3.2. The nature and magnitude of the fish kill was considered sufficient to indicate a potential for recreational fishing losses.

4.2.2 Assessment Determination

Data available from preassessment activities were sufficient to indicate a potential for spillrelated, recreational fishing losses, primarily as a result of the documented fish kill. The data, however, were insufficient to confirm or quantify such losses. Additional investigations would be required both to better define baseline recreational fishing activities in the river and to assess and quantify any reduction in trips or value of trips due to the spill.

Data of this nature can be obtained through systematic surveys and interviews, but such studies are expensive due to technical considerations applicable to the design and implementation of such work. Isolation of spill-related effects would be difficult for any losses just after the spill as the record rainfall in December 1997 remains as a confounding factor. The opportunity for losses related to the fish kill would continue until stocks recover but might also be difficult to isolate in such studies from other factors affecting fishing over the long term and would require more specific information on fish stock recovery. The additional cost of such studies is difficult to justify where results could be inconclusive or where required restoration or the value of the loss might not add substantially to the final claim.

As noted above, recreational fishing is linked to and can be affected by changes in the availability and abundance of fish stocks. Just as the number and value of angler trips can be reduced by a fish kill, restoration actions to increase production and replace lost fish can have a positive effect on the number and value of angler trips in the future. While available data is insufficient to complete an assessment of recreational fishing losses, that data can be used to assist in identifying restoration actions which are most likely to also compensate for potential recreational fishing losses.

For these reasons, the Agencies determined that additional site-specific studies to provide information for use to assess and quantify recreational fishing losses was not necessary and that the additional costs of those studies would not be justified.

Since the Agencies have determined further action to assess recreational fishing losses is not justified, an injury-specific restoration plan for recreational fishing is not included in this DARP/EA. However, because of the benefit of increased fish stock on catch rates and fish trip values, the Agencies expect the restoration actions identified to compensate for fish injuries - through increasing fish biomass - to also address the recreational fishing injuries. This strategy is similar to that which the Agencies adopted for injuries to Freshwater Benthic Invertebrates and Oysters and Mussels, as described in Sections 3.4 and 3.5, respectively, and for potential bird injuries in Section 4.1.

5.0 OVERVIEW OF ASSESSMENT AND RESTORATION PLAN

Sections 5.0 and 6.0 present the strategy, restoration alternatives and scaling methods which the Agencies have identified to use to provide for the restoration, rehabilitation, replacement or acquisition of natural resources or resource services to compensate for the natural resource injuries resulting from the spill.

5.1 Restoration Planning Strategy

State, federal and local liability frameworks for natural resource damages share a common objective -- to provide for expeditious restoration, replacement, or acquisition of equivalent resources or services when injuries to natural resources result from unauthorized discharges of hazardous substances, pollutants or contaminants. Under these laws, the Agencies are responsible for determining the actions needed to restore injured resources and lost resource services to baseline (termed 'primary restoration') and to compensate for interim losses (termed 'compensatory restoration'). The costs of implementing those actions represent a primary measure of an RP's natural resource damages liability.

Consistent with this legal and policy framework, the Agencies' strategy in developing this DARP/EA has been to define compensation for the natural resource injuries or losses which resulted from the spill based the restoration actions which are necessary or appropriate to return resources or services to baseline levels or to compensate for interim losses. Consideration of restoration actions favors the use of on-site, in-kind restoration approaches, wherever possible, to ensure the most direct relationship between resource injuries or service losses and the benefits of restoration actions. The choice of assessment methodologies outlined in this DARP/EA is consistent with this restoration-focus.

In restoration planning, the Agencies' emphasis has been on the areas or resources directly affected by the spill; however, the approach also takes into account the fact that the resources injured are part of a larger ecological system - the Alafia River basin watershed and the Tampa Bay estuary. In identifying and evaluating restoration alternatives, the Agencies have considered, where appropriate, the extent to which restoration actions offer multiple ecological or human use benefits to the larger ecosystem in addition to the benefits to a specific injured resource. Benefits to other resources injured or potentially injured as a result of this spill incident are taken into account under this approach.

Finally, the Agencies' strategy in developing this DARP/EA has also been to use simplified, cost-effective procedures and methods wherever feasible to document resource injuries and to define restoration-based compensation. Accordingly, depending on the injury category, the DARP/EA uses, alone or in combination, relevant scientific literature, scientifically-based models, and focused injury or quantification analyses. Throughout, the Agencies have endeavored to arrive at the most accurate estimate of the injuries caused by the spill, based on the best scientific information and most reliable methods available, at reasonable cost.

5.2 Framework for Identifying Preferred Restoration Alternatives

Restoration alternatives were identified through a two step process. First, a Restoration Workgroup comprised of representatives of the Agencies consulted with or contacted various agencies and private groups, such as SWFWMD, NAS and the Alafia River Basin Stewardship Council (ARBSC), to identify potential restoration alternatives. The Agencies also published a notice in the <u>Tampa Tribune</u> seeking input on restoration alternatives directly from the public.

Through these activities, the Agencies identified ten potential restoration alternatives. These ten alternatives are listed in Table 3 along with examples of potential projects that may be consistent with each alternative.

Restoration Alternative	Generic Description and Examples of Potential Projects		
Natural Recovery	Allow injuries to recover w/o human intervention No Action 		
Enhancement via Nuisance Control	 Eliminate nuisance or exotic vegetation from wetland habitats Application of herbicides Controlled burns Mechanical removal of vegetation 		
Restoration of Estuarine Wetlands⁵	 Create or restore wetlands in estuarine areas of the Alafia River Saltmarsh restoration Seagrass restoration Mangrove restoration Open water habitat creation 		
Fish Stocking	 Rear and release recreationally or commercially important fish species Freshwater fish stocking Estuarine fish stocking 		
Restoration of Riverine Habitat	 Create or restore wetlands in freshwater areas of the Alafia River Freshwater marsh restoration Emergent and submergent vegetation restoration Floodplain habitat creation or restoration 		
Land Acquisition	 Acquire environmentally sensitive land for public use or benefit Fee simple purchase of environmentally sensitive land Purchase of conservation easements 		

Table 3

 $^{^5}$ This alternative is labeled or referred to as 'Restoration of Low Salinity Habitat' in agency records from this screening period.

Surface Water Improvement Projects	 Any project that will improve the quality of surface water entering the Alafia River watershed. Stormwater retention/detention systems Site specific pollution abatement projects Construction of filter marshes Removal of agricultural lands from production Creation of wetland buffer areas
Stream Enhancement Projects	 Projects that improve existing freshwater stream habitats Stream channel modifications Bank stabilization projects
Recreational Projects	 Projects that increase or improve public recreational opportunity on the Alafia River Boat ramps Build canoe rest stops launches Repair/recondition recreational facilities (i.e., shelters, benches, picnic areas) Boardwalks and nature trails
Reef Creation ⁶	 Projects that create underwater, intertidal or shoreline habitat that directly benefit fish and/or invertebrates Create/restore oyster reefs Deploy ReefballsTM Deploy freshwater snags

All restoration alternatives were then screened by the Agencies based on the restoration criteria outlined below at 5.2.1. A primary consideration in this initial screening process was the relationship of the alternative and its potential benefits to the natural resource injuries that occurred due to this spill event. This initial screening resulted in the identification of five restoration alternatives that, in the judgment of the Agencies, could reasonably be expected to achieve objectives for the restoration of injured resources, in light of all the criteria to be applied: Restoration of Riverine Habitat, Restoration of Estuarine Wetlands, Reef Creation, Land Acquisition, and Surface Water Improvement Projects.

These alternatives were then considered more carefully by the Agencies based on the criteria outlined below. These alternatives and the results of that evaluation, with preferred restoration alternatives identified, were presented for public review and comment in Section 6.0 of the Draft DARP/EA released on July 22, 1999. Section 6.0 of this DARP/EA presents the Agencies' final evaluation and selection of restoration alternatives. Additional information on the screening process is presented below at 5.3.

⁶ This alternative is labeled or referred to as 'Artificial Reef' in some agency records from this screening period, but encompassed potential restoration or creation of oyster reefs.

5.2.1 Selection Criteria

The following criteria have been used by the Agencies to screen and to evaluate the listed restoration alternatives:

<u>Relationship of Restoration Action to Type and Quality of Resources and/or Services Injured</u> -Considers the nature and extent to which a restoration action would address the natural resource injuries that occurred as the result of the spill. This includes the extent to which benefits of the action would be on-site, in-kind, or would be otherwise comparable in nature, scope, and location to injuries that occurred. Evaluation of each restoration action also considered the full range of potentially affected resource categories, even if no injury assessment was completed for that category.

<u>Consistency with Restoration Strategy</u> - Considers the degree to which a restoration action relates to the identified restoration strategy of providing on-site, in-kind restoration whenever possible and, if not possible, of providing appropriate restoration consistent with larger ecosystem restoration plans.

<u>Consistency with Community Objectives</u> - Considers the degree to which a given restoration action is consistent with known or anticipated community objectives. Community objectives are derived from larger ecosystem restoration plans as well as concerns for restoration planning articulated by members of the public, such as through the ARBSC or from public review and comment on the draft restoration plan.

<u>Multiple Benefits</u> - Considers the extent to which a given restoration action will address more than one natural resource injury or loss or benefit other resources, including those potentially affected.

<u>Technical Feasibility</u> - Considers both the likelihood that a given restoration action will succeed in a reasonable period of time, and the availability of technical expertise, programs and contractors to implement the considered action. This factor includes, but is not limited to, consideration of prior experience with methods or techniques proposed for use, availability of equipment and materials, site availability and logistical difficulty.

<u>Restoration Site Requirements</u> - Considers the extent to which the scientific, engineering or legal requirements of proposed restoration action can be met by available sites.

<u>Potential for Additional Natural Resource Injury</u> - Considers the risk that a proposed action may aggravate or cause additional natural resource injuries.

<u>Restoration is Self-sustaining</u> - Considers the degree to which a restoration action will achieve success without human intervention.

<u>Consistency with Applicable Laws and Policies</u> - Considers the extent to which a restoration action is consistent with relevant State, Federal and County policies and would be implemented in accordance with State, Federal and County laws.

<u>Potential Effects on Human Health and Safety</u> - Considers the potential adverse impacts a restoration action may have to human health and safety.

<u>Costs</u> <u>Effective</u> - Considers the relationship of costs associated with a given restoration alternative to the benefits of that alternative and the ability to achieve restoration objectives. Other factors being substantially equal, a less costly restoration approach is rated higher.

Based on this evaluation, this DARP/EA identifies the restoration alternatives which have been selected for use to achieve restoration objectives for the injured resources and, in turn, will be used as the basis for defining compensation for these injuries.

5.3 Screening Restoration Alternatives

The Agencies used a numerical scoring approach in screening the broader list of restoration alternatives. This approach accomplished several objectives. First, numerical scoring provides a means by which criteria can be applied to a specific restoration approach. Second, it allows for comparison among dissimilar restoration approaches. Once all restoration approaches are scored, it is easier to compare one, many, or all evaluation factors between potential approaches. Finally, numerical scoring provides an objective basis upon which to narrow the list of restoration alternatives for detailed consideration.

The numeric scale is based upon qualitative descriptors, not quantitative measures. Restoration alternatives were evaluated on a 0 to 3 scale depending on how well a restoration alternative fit a criterion. Using the scale and a worksheet developed for this purpose, each Agency as well as MPI scored all ten (10) of the potential restoration alternatives on each of the eleven (11) selection criteria identified in Section 5.2.1. Upon completion, the scores for each restoration alternative, per criterion, were combined and averaged and recorded on a final worksheet. In this final worksheet, a cumulative total score for each restoration approach is calculated by adding the eleven (11) averaged, per criterion scores for each alternative. The restoration alternatives with the highest five overall scores were selected for further consideration in development of an appropriate restoration plan for injured resources. As noted previously, these five alternatives were Restoration of Riverine Habitat, Restoration of Estuarine Wetlands, Reef Creation, Land Acquisition, and Surface Water Improvement Projects.

6.0 **RESTORATION PLAN**

The Agencies considered each of the five restoration alternatives with reasonable potential to achieve restoration objectives for resources injured by this incident (identified as described in Section 5.0) and the "no action" alternative. Consideration of the "no action" alternative in the restoration planning process is required by NEPA. The Agencies evaluation of these alternatives has taken into account the relationship to primary and compensatory restoration objectives applicable to each resource injury or loss, the selection criteria identified in Section 5.2.1, the benefits to other resources which were or may have been affected by the spill (i.e. benthic invertebrates, birds, recreational fishing, and oysters/mussels) and, consistent with its dual role as an EA under NEPA, other information bearing on the environmental setting for restoration and the potential environmental, social, or economic consequences of each alternative.

This section of the DARP/EA identifies those restoration alternatives which, based on that evaluation, have been selected for use to restore the natural resources or resource services which were injured or lost as a result of this incident. The alternatives evaluated by the Agencies and the rationale supporting the choice of the selected alternatives are presented in this section.

6.1 **Restoration Objectives for Injured Resources**

Primary Restoration Objectives

The goal of a primary restoration action is to facilitate recovery or otherwise assist an injured natural resource or service return to its baseline or pre-spill condition. Agencies may rely on the natural recovery process where injured resources or services will recover within a reasonable period without further action, or in situations where feasible or cost-effective primary restoration actions are not possible. As part of their assessment, the Agencies considered whether actions to assist injured freshwater wetlands, fishery species and surface waters recover to baseline were needed or appropriate.

For each injury category, the Agencies generally found natural recovery processes would allow resources and services to return to baseline conditions without human intervention, within a reasonable period of time. Surface water monitoring data indicates pH levels in the Alafia River returned to normal within weeks of the spill and that chlorophyll *a* concentrations related to the spill were nearing normal levels in Tampa Bay by May 1998. With respect to the injured freshwater vegetation, the Agencies believe, based on technical literature, expertise, and information from limited additional field work in early 1999, that ground cover, which comprised most of the freshwater wetland vegetation injury, will recover naturally within 2 years and subcanopy species will recover naturally in 5 years. Lastly, as noted in section 3.2.3, the assessed losses of Fish, Crab, and Shrimp are, for a number of reasons, not considered large enough to significantly alter future reproduction or recruitment in the river. Consequently, dedicated action to facilitate an overall return to pre-spill population levels is not required. However, after weighing many factors, a limited early stocking effort to directly replace snook of greater than 10" was approved as an appropriate primary restoration action. As described in Section 3.2.2, this early restoration action served to partially offset the kill of similar-sized snook and assist in reducing future production

losses attributable to the fish kill. With the exception of this early action to replace dead snook, no other need or appropriate action to facilitate or assist the recovery of any injured resource or service has been identified by the Agencies.

Compensatory Restoration Objectives

The goal of compensatory restoration in this DARP/EA is to restore, replace or acquire natural resources or services like those injured as a result of the spill as a basis for compensating for the interim losses of natural resources and resource services which occurred. The scale of a compensatory restoration action depends on both the nature and extent of the resource injury and how quickly each resource and its associated services return to baseline.

For resource injuries addressed in this plan, the following objectives were used in identifying compensatory restoration actions:

(1) Provide freshwater vegetation services of higher quality (higher diversity) as a basis for compensating for the interim loss of freshwater wetland services;

(2) Replace the biomass of fish, crabs and shrimp lost due to the spill through creation or enhancement of habitat(s) capable of generating an equivalent biomass over time.

(3) Provide for the removal of nitrogen from surface waters over time in a manner sufficient to offset the amount of nitrogen introduced into the system by the spill.

6.2 No Action Alternative

Under this alternative, the Agencies would take no direct action to restore injured resources or to compensate for lost resource services pending their ecological recovery. Only natural recovery occurs under this option. Interim losses are not compensated.

Under laws applicable to public natural resource damage claims, the Agencies are responsible for seeking compensation for interim losses where these losses are significant and where feasible, cost-effective alternatives are available for use to define restoration-based compensation. While natural recovery will appropriately meet primary restoration objectives for all injured resources but one in this instance (i.e., early restoration action re: snook), the no action alternative will not satisfy any of the compensatory restoration objectives outlined above and was rejected on that basis.

6.3 Restoration of Riverine Habitat - Selected Alternative for Restoration of Freshwater Wetlands and Surface Water Services

Restoration of riverine habitat may be accomplished by converting non-native uplands, such as agricultural lands or filled historic riverine habitat, into freshwater floodplain wetlands, or returning disturbed vegetative communities (i.e., nuisance or exotic species dominated) back to an original or more desirable wetland community structure. Excavation, planting and monitoring to achieve restoration success are the major components of such projects. The Agencies have selected

restoration of riverine habitat as the best approach for restoring interim losses associated with the injured freshwater vegetation described in Section 3.1 and the injury to surface waters described in Section 3.3.

Restoration of riverine habitat, for the purposes of this DARP/EA, shall not include the conversion of native coastal uplands, native riparian river buffers, or other types of native wetlands habitats into another less common wetlands type of less maturity. This decision is based on the desire to preserve the integrity of existing native habitats with important wildlife habitat services.

6.3.1 Evaluation of Alternative

For Freshwater Wetlands

The die-off of freshwater wetland vegetation caused by the spill represents an interim loss of ecological services associated with that vegetation. Action to restore or create riverine habitatis the most direct way to restore or replace ecological services comparable to those lostdue to the spill. Pre-spill, the ecological services in these areas were largely provided by nuisance vegetation, with minimal habitat diversity.

Current permitting practices ensure the restoration or creation of riverine habitat will achieve the restoration objective for the lost freshwater wetland services by allowing only native, nonnuisance vegetation to be used in a riverine habitat project. This is an efficient means of replacing or acquiring ecological services like those lost as it will compensate for the services lost by improving the quality of wetland vegetation and, in turn, enhance the future flow of ecological services provided by restored areas. The increased quality of ecological services provided through riverine habitat restoration can be captured by measures of vegetative diversity.

Florida's mandatory program for the reclamation of mined lands has greatly advanced the science of freshwater wetland restoration. Many of the advances in wetland restoration technology on mined lands comes from work sponsored by the Florida Institute of Phosphate Research (FIPR) or phosphate mining companies undertaking reclamation in Florida. As a result, projects to restore or create riverine habitat are feasible and have been successful in meeting restoration goals. The expertise necessary to plan, implement or oversee such a project is also available. The Agencies have identified a number of areas in the Alafia River watershed suitable for siting a potential riverine restoration project. The available restoration technology and the opportunity to conduct meaningful riverine restoration constitute an important basis for selecting this approach as the preferred alternative.

A riverine habitat project dominated by herbaceous vegetation may be at risk of reverting to undesirable or nuisance species over time. The long-term sustainability of a riverine restoration or creation project is important and requires consideration of the future management of nuisance vegetation. The desire for such a project to be self-sustaining after a reasonable period of time, however, can be achieved through appropriate project design features. Richardson et al. (1994 and 1998) suggests that long term nuisance species control may be achieved by incorporating trees capable of shading out nuisance species. Nuisance species such as primrose willow can be

controlled in 4 to 5 years using this approach. Accordingly, a mixed forested wetland may be the most appropriate target community to achieve long-term project success.

For Surface Waters

The imbalance in natural aquatic fauna in the Alafia River and in Tampa Bay through May of 1998, due in part to the increased nitrogen loadings from the spill, represent an interim loss ecological services associated with surface waters. Restoration projects that actively assimilate and remove nitrogen from surface waters are the most direct way to restore or replace ecological services comparable to the those lost.

The ability of both natural and created wetlands to remove nitrogen, as well as other pollutants, from surface waters has been well documented in the literature (Carr and Rushton 1995, Kadlec and Knight, 1996). Although some freshwater wetland community types are better at removing nitrogen than others, the Agencies believe there is strong evidence indicating that restored riverine habitat will function efficiently to remove nitrogen from surface waters and, therefore, represents the best and most sustainable approach for restoring surface water services in the Alafia River watershed. Measures of nitrogen removal can be used to capture the enhancement of surface water services.

A riverine restoration project need not be sited in areas directly affected by the spill to provide improved surface water services in the affected riverine system. Any tributary with elevated levels of nitrogen and other pollutants could be targeted to maximize the improvements to surface water. A riverine restoration project located anywhere in the Alafia River watershed would enhance surface water services in the affected system and compensate for the interim lost surface water services in both the Alafia River and Tampa Bay. Utilizing vegetation with the highest capacity for or siting restoration in areas with the greatest need or potential for nitrogen removal, however, may increase restoration efficiency and help minimize the scale required to achieve restoration objectives.

Implementation of restoration of riverine habitat for either freshwater wetland or surface water injuries may require land acquisition.

6.3.2 Restoration Scaling

For Freshwater Wetlands

Potential riverine restoration projects for ground cover and subcanopy injuries would provide a higher quality level of vegetation services than those that were lost.⁷ Instead of providing the less desirable monotypic vegetation characteristic of the injury site, the selected restoration approach would provide a wider array of more desirable species. Because the restoration will provide higher

 $^{^7}$ The restoration for the canopy injuries will provide similar quality resources and services as those that were lost

quality vegetation, it is necessary to credit the restoration with the added quality. A diversity measure that was reported at the BOMR sampling stations (see description at Section 3.1.1) enables the Agencies to quantify the added quality of restoration. A measure of diversity – the Hill's ratio, which is a function of the Shannon Wiener index – was calculated for ground cover and subcanopy in Area A and Area B.⁸ The measure is the average of the diversity indices for ground cover and subcanopy classes at the appropriate stations. With a measure of vegetation quality at the injury sites and also anticipated at the restoration sites, it is possible to determine the trade off of restoration habitat for injured habitat.⁹ Lost diversity is closely correlated with other service losses (for example, suitability to support habitat functions declines as diversity diminishes). Diversity measures can also capture quality differences between injured and compensatory restoration sites.

The restored or replacement services would be of comparable value to the lost services. The restoration is likely to occur within the same landscape context as the injury area so the restoration will have the opportunity to provide the ecological services that were lost, e.g., nutrient uptake, habitat, and diversity. The ability of the restoration to provide the same opportunity for services relative to the injury site subsequently influences the value of services. Under these conditions, HEA is appropriate for determining the size of the restoration projects. Given parameters of the restoration projects, including year of implementation, years to functional maturity, and level of quality (or diversity), the scale of restoration that provides the equivalent of the lost vegetation services can be determined.

For Surface Water

HEA will also be used to determine the size of the restoration project necessary to address the surface water injury, consistent with the preferred restoration alternative. The quantity of nitrogen released into the surface water will be used as a metric, or unit of analysis. For the selected restoration action, the analysis will determine the project scale necessary to remove an equivalent amount of nitrogen from surface water runoff over the expected lifespan of the restoration project. The calculation of restoration scale will be dependent, in part, on the treatment efficiency of the restoration action (i.e., the ability of the restoration action to remove nitrogen from surface water) and will be based upon literature values. The use of HEA is appropriate since, under the preferred restoration alternative, restoration actions are expected to result in the uptake of nitrogen from surface waters, an ecological function of the same type and quality, and of value comparable to the interim injury to surface water caused by the spill.

⁸ The Hill's ratio is $\frac{1}{e^{H'}}$ where H' is the Shannon-Wiener index and λ is $\sum_{i=1}^{S} p_i^2$; p_i is the proportional abundance of the ith species and was estimated using the relative abundance of a species as a proportion of total cover for each cover class. The ratio is decreasing in diversity and converges toward one as one species dominates. We report the diversity measure as one minus the Hill's ratio so the diversity index is increasing in diversity.

⁹ For the canopy injury and restoration, no quality measurements are needed since the restoration for the canopy injury is expected to provide the same quality of vegetation as that which was lost.

Implementation of Scaling

In scaling for freshwater vegetation losses and surface water injuries under this alternative, the Agencies recognize that restoration projects selected to restore or replace the lost vegetative services will also function to provide for nitrogen removal and that the extent to which this occurs must be taken into account in the scaling process. In scaling the restoration required to compensate for the surface water service losses, credit must be given for any nitrogen removal contributed by projects selected to address the lost vegetation services. This is necessary to avoid overcompensating for surface water losses under the proposed restoration plan.

6.3.3 Environmental and Socio-Economic Impact

Restoration of riverine habitat is likely to involve the temporary use of equipment, such as trucks or other machinery, which will potentially increase noise, dust, and traffic in the immediate project vicinity. The site would be transformed from a non-native upland or degraded wetland into a freshwater marsh, forested floodplain wetland or similar habitat. The ecological benefits of such a riverine project will support or contribute to the overall health of the ecosystem in the Alafia River basin and in Tampa Bay. This indirectly benefits humans by enhancing opportunities for recreation and enjoyment of these areas through activities such as boating, bird watching, and fishing and by helping to support property values and use, tourism and water dependent commercial activities. This alternative, however, would not have any significant socio-economic impacts.

6.4 Restoration of Estuarine Wetlands - Co-Selected Alternative for Restoration of Fish, Crab, and Shrimp Biomass Lost

This alternative involves converting non-native uplands or previously filled wetlands into tidally-influenced habitat, or replacing nuisance or exotic-dominated vegetation communities in estuarine areas with more productive estuarine vegetation. The Agencies have selected estuarine habitat restoration as one of two alternatives for use to restore the biomass of fish, crab, and shrimp lost as a result of the spill, as described in Section 3.2.

6.4.1 Evaluation of Alternative

Restoration of estuarine wetlands is a proven and successful strategy for increasing the types of habitat, such as salt marsh, considered critical to the life history of many species of fish, shellfish and shrimp found in the estuary and to the recruitment and production of such species in the estuarine environment. The linkage between fishery productivity and estuarine wetlands, such as smooth cordgrass (*Spartina alterniflora*) marshes, is generally accepted, with productivity values or estimates associated with spartina marshes considered to be among the highest for estuarine habitats. As such, the Agencies consider action to restore or create estuarine wetlands as one of the most direct and ecologically efficient ways to restore or replace the fishery biomass lost due to the spill.

Restoration of estuarine wetlands is feasible both from a technical standpoint and in its ability to restore injured resources. The Agencies consulted with the SWFWMD, which has an existing estuarine habitat restoration program, during development of this DARP/EA and found that there are present opportunities to successfully create or restore estuarine wetlands within one to two miles of the mouth of the Alafia River. These opportunities involve the creation or restoration of salt marsh habitat, with gradual transition over time to a mixed wetland community dominated by mangroves. These projects are also believed to function well when compared to natural systems. Although potentially well suited to the restoration objectives for fishery losses, restoration projects which are ongoing or in an advanced state of planning, such as those identified by SWFWMD, would be ineligible for use to implement restoration under this alternative if funding to implement these actions is or becomes available from other sources. Further, the planning, funding and schedule for implementation of these projects is not within the control of the Agencies. As such, determining the costs to implement estuarine habitat restoration for public claim purposes requires the Agencies to identify such costs based on the development and implementation of new restoration projects. These, however, may be patterned after other successfully designed projects and the scientific, engineering and legal requirements associated with most new restoration projects can be efficiently addressed at reasonable cost by partnering with SWFWMD or others to assist in the design and implementation of this restoration alternative. Based on experience with other estuarine wetland restoration projects, it is anticipated this restoration alternative will be selfsustaining after 5 to 7 years, with limited maintenance activities or other active intervention required during that period. Because such projects are primarily designed to benefit or improve ecological resources, no human health or safety issues would exist beyond the construction phase.

Restoration of estuarine wetlands is consistent with other identified ecosystem restoration objectives (i.e., the Comprehensive Conservation and Management Plan for Tampa Bay [CCMP] and the Surface Water Improvement & Management Program [SWIM]). Indeed, restoration of estuarine wetlands is a key part of several larger ecosystem restoration plans for the Tampa Bay estuary, in part, because such habitats are so essential to healthy fisheries.

As with any restoration action, implementation may adversely affect natural resources for some period of time, particularly if it involves earth moving or other physical activities in or adjacent to existing wetlands. Short-term negative impacts may include loss of non-native upland vegetation, temporary increases in water turbidity and temporary losses of water quality services. Such impacts are generally minimized through planning and during implementation. In the longer term, the benefits of restoring or creating estuarine wetlands - i.e., providing habitat essential to healthy fisheries, bird nesting and foraging areas and other wildlife habitat, assisting in maintaining surface water quality, and supporting recreational activities - outweigh any short term impacts.

The costs of restoring estuarine wetlands may be less on a per acre basis than for restoration such as reef creation. However, if estuarine wetlands do not restore the fishery biomass more efficiently, the cost of implementing this alternative may be comparable to the cost of other alternatives because more estuarine acreage would be needed to restore the fish biomass loss. Cost efficiencies may be achieved through partnering with pending restoration projects, which would tend to further minimize the costs of this option. It is more likely, however, that the Agencies must proceed with new projects that may for instance, require land acquisition, which would drive up restoration costs dramatically.

The Agencies determined that restoration of estuarine wetlands in combination with the creation of new oyster reef habitat is the most efficient and best means to provide for the restoration of the fish biomass lost. This determination is supported by work undertaken since release of the Draft DARP/EA. This work took into account available scientific data and evidence bearing on the relative annual secondary productivity between oyster reef habitat and artificial reefs in light of similar information on estuarine wetlands. It also took into account the data and evidence regarding species utilization associated with these habitats and the species killed by the spill. The work indicated oyster reef would likely be the most productive of the habitats under consideration and would provide habitat and ecological services to the greatest number of the species killed. It also indicated estuarine wetland habitat services would likely better support those species lost which are not supported by oyster reef habitat. The combination of oyster reef and estuarine habitat restoration, therefore, will benefit more of the fish species lost than either restoration alternative alone or any other combination of restoration alternatives, including artificial reefs and seagrass restoration.

6.4.2 Restoration Scaling

Estuarine wetlands restoration will provide the same type of and quality of resources and services as were lost as a result of the spill (e.g., production of fish, blue crab and pink shrimp). HEA will be used to determine the size of the restoration project. Where fish, blue crab and pink shrimp losses are quantified in terms of the biomass (kg wet weight) directly lost or not produced, HEA allows the scale of the selected restoration to be based on the anticipated production of fishery biomass. The use of HEA is appropriate since the selected restoration alternatives are expected to produce or enhance fish, blue crab and pink shrimp productivity, providing resources and services of the same type and quality, and of value comparable to those lost. Further, where the services lost and those provided at restoration sites might differ, HEA can account for those differences and, thus, remains an appropriate scaling tool.

6.4.3 Environmental and Socio-Economic Impact

Restoration of estuarine wetlands is also likely to involve the temporary use of equipment, such as trucks or other machinery, which will potentially increase noise, dust, and traffic in the immediate project vicinity. The site would be transformed from a non-native upland or degraded wetland into an intertidal salt marsh or mangrove habitat. The ecological benefits of such a project will also support or contribute to the overall health of the ecosystem in the Alafia River basin and in Tampa Bay and indirectly benefit humans by contributing to opportunities for recreation and enjoyment of these areas through activities such as boating, bird watching, and fishing and by helping to support property values and use, tourism and water dependent commercial activities. This alternative, however, would not have any significant socio-economic impacts.

6.5 Oyster Reef Creation - Co-Selected Alternative for Restoring Fish Biomass Lost

As outlined in the Draft DARP/EA, this alternative includes the placement of hard substrate as three dimensional structure in open water, on shorelines or in intertidal areas for the purpose of creating productive fish habitat. Restoration actions of this nature could be located in either freshwater or estuarine portions of the Alafia River or in Tampa Bay in the vicinity of the river. Artificial reef material can be anything from engineered or designed concrete structures to fossilized oyster shells, subject to consistency with government regulatory and/or resource enhancement programs.

Based on the Agencies' consideration of such factors as the relative productivity of oyster reef and artificial reef habitats, the ecological support for species killed by the spill and public comments on the Draft DARP/EA, the Agencies have identified oyster reef creation as the co-selected restoration alternative to provide for restoration of the fish biomass lost.

6.5.1 Evaluation of Alternative

Reef creation - whether accomplished through reestablishment or creation of oyster reefs or the creation of three dimensional artificial reef structures - can provide fish habitat, contribute to improving surface water quality, enhance recreational opportunities and result in the production of new fishery biomass. The primary benefits of reef creation and the resources served, however, may be somewhat different, depending on the type of reef created. Artificial reef structures primarily serve to provide three dimensional habitat for fish and other aquatic fauna. Encrusting or fouling communities such as sponges, bryozoans, corals, oysters and mussels will rapidly colonized hard, artificial reef substrates and such habitats will attract fish, a function which enhances recreational fishing opportunities. Created reef areas can enhance the availability of previtems or create new foraging opportunities. Schooling fish associated with reefs, for instance, provide prey items for larger fish species and intertidal or shallow reefs will support worms, crabs, shrimp, small fish and other organisms which are a forage base for wading and shore birds. Where created reefs are designed to recruit and support oysters, in addition to re-establishing or creating historic oyster reef communities, these reef would improve surface water quality directly since oysters are filter feeders and assist in removing suspended sediments from the water column. Similarly, different types of reefs may vary in terms of their potential contribution to fishery production.

The nature and extent to which a created reef is capable, through fishery production, of restoring the fish biomass lost is a key consideration in this restoration plan. For artificial reef structures in particular, much has been written and debated about their 'fish attraction' versus 'fish production' function. Without resolving larger issues implicated in debate over these functions, the Agencies recognize that reef habitats, including those utilizing artificial substrates, support complex interactions in the marine or estuarine environment and that significant fisheries production may, in fact, occur. Further, created reefs, particularly if sited in shallower, low energy areas in the estuarine portion of the Alafia River or in Tampa Bay, have the potential to support a mix of species similar to those lost due to the spill.

In general, all reef creation projects are technically feasible, with designs ranging from sim ple oyster bars to com plex artificial structures designed by interdisciplinary teams of biologists, engineers, and oceanographers. The creation of reefs, and oyster reefs in particular, has been specifically identified as a part of a larger ecosystem restoration strategy for Tampa Bay (Tampa Bay National Estuary Program, 1996), which encourages the identification, protection and restoration of hardbottom communities. Reef creation actions, particularly artificial reefs, are also generally popular with the recreational fishing community. Although cost will be dependent on a number of factors including design, size, location, material type, transportation or deployment costs, reef creation of oyster reefs appear to exist in the Alafia River and in other nearby areas of Tampa Bay. Created reef habitat would be self sustaining in the long term, given a type or design appropriate to the depth and physical extremes (e.g., current velocity, wave energy, etc.) to which it will be subject. Conditions affecting stability can also be minimized through sound site selection.

Created reefs are usually permanent habitats which displace some other type of submerged habitat. Reefs are usually sited in sand or relatively 'barren' bottom areas to ensure that the action results in greater or enhanced services to the environment. Existing regulatory (permitting) processes normally will restrict reef creation to areas with a low potential for additional resource injury. Habitat displacement/replacement, however, would likely be a critical factor weighing against use of this restoration alternative if the scale of reef creation required to restore the fish biomass lost proves to be very large. In that event, the costs associated with a large reef project may also weigh against use of this alternative.

Work undertaken since release of the Draft DARP/EA indicates that reef creation actions encompassed by this alternative are not equivalent in terms of their ability to provide for the production of fish biomass or to achieve restoration objectives for the species killed by the spill. This work considered available scientific data and evidence bearing on the relative annual secondary productivity between oyster reef habitat and artificial reefs. Productivity estimates based on that information indicated that oyster reefs were likely to be more efficient at restoring fish biomass than constructed artificial reefs, accounting for fishing pressure (225 g/m²/yr vs. 171.0 g/m²/yr). In addition, data and evidence regarding species utilization associated with these different reef types and the species killed by the spill indicates oyster reef would ecologically support more of the species killed by the spill than constructed artificial reef habitat. Together with public comments on the Draft DARP/EA which also favored its use, this information led the Agencies to identify oyster reef creation as the most efficient type of reef creation for use, in combination with the restoration of estuarine wetlands, to provide for restoration of the fish biomass lost.

6.5.2 Restoration Scaling

Oyster reef creation would provide the same type of and quality of resources and services that were injured as a result of the spill e.g., production of fish, blue crab and pink shrimp. HEA will be used to determine the size of the restoration project. Where fish, blue crab and pink shrimp losses are quantified in terms of the biomass (kg wet weight) directly lost or not produced, HEA

allows the scale of the selected restoration to be scaled based on its anticipated production of fishery biomass. The use of HEA is appropriate since, under the selected restoration alternatives, restoration actions are expected to produce or enhance fish, blue crab and pink shrimp productivity, which are services of the same type and quality, and of value comparable to those lost. Further, where lost services and those provided at restored sites might differ, HEA can account for those differences and, thus, remains an appropriate scaling tool.

6.5.3 Environmental and Socio-Economic Impact

Depending upon the scale necessary to compensate for fishery losses, an oyster reef could substantially alter the bottom characteristics of the area of deployment. Typically, artificial reefs are located on sandy, featureless bottom, thereby displacing the existing flora and fauna that depend upon that habitat, replacing it with those that depend on a hard substrate. Because there were historically oyster reef bars in the lower Alafia River and in Tampa Bay, restoration of these habitats or conditions is desirable. Depending on the type of reef and its location, marking of reef structures may be required to minimize navigation hazards, which would be an additional cost consideration. Some artificial reef structures may be inherently hazardous to recreational users such as SCUBA divers. Oyster reef habitat is also inherently hazardous to swimmers or waders because it is a sharp, uneven, and unconsolidated substrate. If the reef is unauthorized or not approved for taking of shellfish for consumption, eating shellfish from the area presents a potential health threat.

6.6 Surface Water Improvement Projects - Non-Selected Alternative

This alternative encompasses projects specifically designed or constructed to substantially improve the quality of surface waters entering or within an environmental system. Projects to address "point" sources, such as sewage or industrial wastes, are not included because these pollutant sources are controlled through regulatory programs. Projects that address "non-point" sources, i.e. pollutants entering water bodies through more general pathways, particularly stormwater runoff, are included. Untreated stormwater runoff is considered by federal, state, and bay mangers to be one of the major sources of water pollution due to it high nitrogen content (EPA Florida Surface Water Quality Report, 1999) (T.B. Estuary Program, 1999).

A number of approaches or technologies may be used to achieve removal of pollutants from surface waters. In considering these varied approaches, the Agencies have focused on structural or constructed facilities, rather than passive or indirect strategies (such as reducing or eliminating farming fertilization or community education to reduce residential herbicide/pesticide use). Structural or constructed stormwater management facilities include detention and retention systems as described by Harper (1995). Detention and retention systems are characterized by sloped sides or berms that retain stormwater and control structures, such as culverts or weirs, that allow the water to enter or exit. Some wetland vegetation may be associated with detention and retention systems.

Isolated natural wetlands and some constructed wetlands have been integrated into some stormwater treatment systems in recent years. In this restoration plan, the use of natural or

constructed wetlands is not considered under this alternative. Rather, restoration actions of this nature are encompassed by and considered as part of the restoration of riverine habitat alternative at 6.3.

6.6.1 Evaluation of Alternative

Constructed or structural facilities to improve the character or composition of surface waters within the Alafia River watershed are feasible and appropriate projects could be expected to provide for nitrogen removal. However, other restoration objectives would not be served by this alternative. Such facilities would not provide for the replacement of the fishery biomass lost in any direct or measurable way and the ecological services associated with wetlands vegetation in these facilities is diminished by its isolation from the functional landscape.

These facilities generally involve more complex implementation scenarios, which would increase restoration costs. The implementation of constructed facilities in Florida is based on guidelines and regulations developed by SWFWMD's Stormwater Research Program and these guidelines do not coincide with compensatory restoration objectives for this incident. Substantial controls could be required at project sites to ensure that compensatory restoration objectives would be achieved. Such measures could include land acquisition or ongoing management actions to preserve the project's integrity and function. For instance, a management action might include weir or culvert debris removal to ensure consistent structural function. The higher costs associated with such facilities or controls may not be justified where appropriate riverine restoration actions avoid some of these cost elements while still meeting the restoration objective for surface waters.

Two water quality monitoring projects have been submitted by the public for consideration as part of the restoration planning process, an action which indicates that surface water quality and services are generally important to the public. Surface water improvement projects are also consistent with some larger ecosystem restoration objectives as outlined in the CCMP and SWIM plans. However, the restoration of riverine habitats provides an opportunity to achieve restoration objectives for surface waters as well as freshwater vegetation losses and, therefore, provides for greater consistency with assessment and ecosystem objectives, likely at less cost than the surface water improvement projects alternative.

6.6.2 Environmental and Socio-Economic Impact

Surface water improvement projects would provide positive social and economic benefits and would have minimal negative impacts on the environment. Surface water improvement projects support or contribute to a healthy ecosystem. Water-dependent human uses, such as swimming, boating and recreational fishing, benefit from improved surface water quality and would not suffer adverse impacts from implementation of such projects. Similarly, economic activities derived from the Alafia River and Tampa Bay, including commercial fishing, bait and tackle shop businesses, and boat rental operations, would also be expected to benefit from surface water improvements. It is

possible that surface water improvements could come at the expense of minor impacts to natural resources, but any anticipated impacts would be more than offset by the net environmental benefit of improved surface water.

6.7 Land Acquisition - Non-Selected Alternative

Land acquisition involves the purchase of lands or conservation easements, with an accompanying change in land management, ensuring that future use of such lands are compatible with preservation and conservation of its environmental functions, consistent with public land management objectives.

6.7.1 Evaluation of Alternative

Land acquisition activities primarily function to improve or maintain ecological resources and water quality. Such actions have little potential to cause additional injury to natural resources, to pose human health or safety issues or to be inconsistent with general laws or policies. However, to serve compensatory restoration objectives under authorities applicable to this spill, the purchase of land or easements must be capable of offsetting interim resource or resource services losses through the preservation, conservation or enhancement (through land management changes) of those lands. As compared to other alternatives, land acquisition activities are a much less direct means of satisfying restoration objectives for the injured resources. Such activities would not directly provide or create new habitat to restore or replace the fishery losses. Similarly, land acquisition activities alone would not provide or create new or more diverse freshwater wetlands. Ecological services gained under this alternative would accrue only to the extent that activities will prevent or otherwise protect fishery or freshwater wetland habitat from future loss or injury due to development or other committed uses. Land acquisition activities may be better suited to achieving the restoration objective for the injury to surface waters (ex: reduce nitrogen runoff to surface waters through reduced fertilizer/pesticide use attributable to removing land from agricultural use), but is still an indirect means for meeting that goal.

Only incremental improvements over baseline conditions would be expected from most land acquisition activities since most lands targeted under this alternative would be undeveloped and not presently adversely affecting natural resources such as freshwater wetland services or fisheries. Consequently, to sufficiently compensate for resource losses, use of this alternative would likely require a large amount of land and, further, to provide the necessary linkage to injured resources, such lands would need to be contiguous with the Alafia River or Tampa Bay (i.e., waterfront property). The potential costs involved in the purchase of large amounts of such lands, or rights thereto, indicate this alternative may be the least cost-effective restoration alternative in this instance. The costs of implementing this alternative may also include the necessary cost to alter land use or management or otherwise apply and enforce management controls.

Public land acquisition programs do exist which seek to preserve critical ecosystem functions or threatened habitat (e.g., the Hillsborough County Environmental Lands Acquisition and Protection Program [ELAPP]). An existing land acquisition program may facilitate implementation of this restoration alternative and help minimize costs to some degree. It also suggests some general public support for this type action exists in the community, however, it is not clear that the public would accept land acquisition activities alone as sufficient "restoration" to compensate for resource losses, particularly since the linkage and benefits accruing to injured resources from this restoration alternative are indirect.

Land acquisition activities can result in other benefits, including long term environmental and recreational benefits provided by the creation of natural buffers, wildlife corridors, and prevention of urban sprawl. While positive, these type of benefits either bear little to no relation to the resource injuries being addressed in this plan or cannot be quantified in a manner that permits scaling restoration to the injuries assessed.

6.7.2 Environmental and Socio-Economic Impact

No adverse environmental or economic impacts are expected from this alternative. By preventing development on land adjacent to the Alafia River, the alternative could provide substantial long term environmental benefits.

7.0 ESTIMATING RESTORATION COSTS

The costs of implementing the selected restoration alternative(s) will be estimated in accordance with the guidance and methodologies identified in this section.

In estimating the costs of implementing selected restoration alternative(s), the Agencies will include and estimate all costs necessary to complete the restoration action in a manner which is appropriate to ensure long term viability or success of the restoration action. The following cost factors will be included in estimating restoration costs consistent with the final restoration plan:

- Development of conceptual design, appropriate engineering specifications, criteria and methods for use in monitoring project performance and success, and detailed project work plans for implementation and monitoring;

- Site acquisition costs, including but not limited to costs associated with appraisals, environmental audits, title searches, purchases, title transfers, development of easements or other form of deed/use restriction, etc.;

- Compliance with all other laws and procedures applicable to the implementation of selected restoration actions, including but not limited to conducting, meeting or providing for protected species consultations, coastal zone consistency determinations, biological surveys, cultural resource surveys, mosquito management, contaminants screening, materials disposal, landfill use, special land use or zoning requirements, essential fishery habitat consultations, "Section 404" and other federal, state or local permitting requirements, environmental assessment or environmental impact statement preparation, etc.;

- Project construction phase costs, including but not limited to equipment or materials acquisition, transportation and use, site burns, site treatments, modifications or recontouring, planting material acquisition and use, acquisition and application of chemicals such as herbicides, site markings, actions to restrict site access during or after construction, special logistical support, direct and indirect labor costs, administrative or contractor overheads, etc.;

- Monitoring of restoration performance, including but not limited to site visits, data collection and analyses, preparation of monitoring reports and all other activities appropriate to document project performance relative to success criteria;

- Other activities appropriate to project maintenance, including but not limited to management actions or zoning changes, trash removal, control of nuisance or exotic species, fencing, signs, etc.

- Providing for mid-course corrections to address issues, problems or conditions affecting restoration performance;

-Activities of each Agency involved in overseeing restoration implementation, including maintenance and performance monitoring, including but not limited to procurement and contracting costs, public notice or review processes, legal and technical activities or review, direct and indirect labor costs, all applicable administrative overhead rates, etc.

Costs of selected restoration actions will be developed using determined unit costs, information regarding costs of similar projects in the Tampa Bay area, information solicited from potential contractors or through surveys of available contract services, or from persons with reliable knowledge or experience with regard to costs of particular restoration actions or components. In estimating such costs, all anticipated direct, indirect costs and overheads will be included.

8.0 COMPLIANCE WITH OTHER KEY STATUTES, REGULATIONS AND POLICIES

Comprehensive Environmental Response, Compensation and Liability Act of 1980 (CERCLA), 42 USC 9601, *et seq*.

CERCLA is the principle statute applicable to sites contaminated with hazardous substances and to spills of those substances. The statute establishes liability for site clean up, prescribes a procedure for identifying and ranking contaminated sites, provides funding for site cleanups, reduces uncontrolled releases of hazardous substances, establishes cleanup procedures that provide protection for humans and the environment, establishes liability for the injury to, destruction of or loss of natural resources caused by releases of hazardous substance and provides for the restoration of injured natural resources through provisions administered by the natural resource trustees.

CERCLA provides a framework for conducting sound natural resource damage assessments that achieve restoration. The process emphasizes both public involvement and participation by the potential RPs. For the Alafia River spill, CERCLA is a primary statute supporting the assessment and restoration planning process undertaken by the Agencies. This DARP/EA is consistent with all applicable CERCLA provisions.

National Environmental Policy Act (NEPA), 42 USC 4321, et seq., 40 CFR Parts 1500-1508

In considering and identifying the restoration actions described herein, the DARP/EA for the Alafia River spill integrates the elements of an Environmental Assessment (EA) in accordance with NEPA. The DARP/EA, however, identifies the restoration actions which the Agencies believe are appropriate to return the Alafia River to baseline conditions and compensate the public for interim natural resource losses. When specific restoration actions are identified for implementation in accordance with this restoration plan, the Agencies will conduct a supplemental analyses of these specific activities in order to support findings required by NEPA.

Federal Water Pollution Control Act (also referred to as the Clean Water Act (CWA)), 33 USC 1251, *et seq*.

A Section 404 permit will be obtained, if necessary, in implementing any restoration action outlined within this DARP/EA. All applicable provisions of the CWA have been considered in developing this DARP/EA.

Coastal Zone Management Act (CZMA), 16 USC 1451, et seq., 15 CFR 923

The Agencies believe the proposed restoration actions identified in the DARP/EA are consistent with applicable elements of the Florida Coastal Management Program (FCMP). NOAA and DOI submitted their determination of consistency to the Florida Department of Community

Affairs for review by letter dated July 28, 1999 and have considered and addressed all comments submitted in response to that letter in completing this DARP/EA. A summary of these comments and the Federal Agencies' responses are included in Appendix F.

Endangered Species Act (ESA), 16 USC 1531, et. seq., 50 CFR Parts 17, 222, 224

The ESA directs all federal agencies to assist in the conservation of threatened and endangered species to the extent their authority allows. Protection of wildlife and preservation of habitat are the central objectives in this effort. The Department of Commerce (through NOAA) and the Department of the Interior (through USFW S) publish lists of endangered and threatened species. Section 7 of the Act requires that federal agencies consult with these departments to minimize the effects of federal actions on these listed species.

The restoration alternatives described in this DARP/EA are not expected to adversely impact any species listed under the ESA. Prior to implementation of the final restoration plan, the Trustees will initiate consultation with the appropriate agencies pursuant to the ESA and ensure that the restoration actions contemplated are in accordance with all applicable provisions.

Fish and Wildlife Conservation Act, 16 USC 2901, et seq.

According to the United States Fish and Wildlife Service, a trustee, the proposed restoration activities identified herein will encourage the conservation of non-game fish and wildlife.

Fish and Wildlife Coordination Act (FWCA), 16 USC 661, et seq.

In implementing specific restoration projects in accordance with this plan, the Agencies will initiate consultation with the USFWS pursuant to this statute.

Magnuson Fishery Conservation and Management Act, 16 USC 1801, et seq.

The Magnuson Fishery Conservation and ManagementActprovides for stew ardship of the Nation's fishery resources within the Exclusive Economic Z one, covering all U.S. coastal waters out to 200 miles. The resource management goal is to achieve and maintain the optimum yield from U.S. marine fisheries. The Actalso establishes a program to promote the protection of Essential Fish H abitat (EFH) in the planning of federal actions. After EFH has been described and identified in fishery management plans by the regional fishery management councils, federal agencies are obligated to consult with the Secretary of Commerce with respect to any action authorized, funded, or undertaken, or proposed to be authorized, funded, or undertaken, by such agency that may adversely affect any EFH.

NOAA and DOI do not anticipate that the selected restoration alternatives will adversely impact any Essential Fish H abitat as designated in the Act. The neteffect of the selected restoration projects will be to create or restore EFH, which is in limited abundance. However, to ensure compliance on a project by project basis, NOAA and DOI will make an EFH evaluation and initiate appropriate consultation with the National M arine Fisheries Service, Southeast H abitat Protection Division after specific restoration project details have been developed.

Marine Mammal Protection Act, 16 U.S.C. 1361-1326, 1371-1384 note, 1386-1389, 1401-1407, 1411-1418, 1421-1421h, et. seq.

The identified restoration activities will not have an adverse effect on marine mammals.

Migratory Bird Conservation Act, 126 USC 715, et seq.

The identified restoration activities will not have an adverse affect on migratory birds which are likely to benefit from the establishment of new riverine and estuarine habitats.

Archeological Resources Protection Act, 16 USC 470, et seq.

The Florida State Historical Preservation Officer will be consulted in implementing specific restoration projects in accordance with this plan to ensure that there are no known cultural resources in the project area and no known sites or properties listed on or eligible for listing on the National Register of Historic Places.

Anadromous Fish Conservation Act, 16 USC 757.

The identified restoration activities will protect and promote the conservation and restoration of anadromous fish resources and habitat.

Rivers and Harbors Act of 1899, 33 USC 403, et seq., Section 10

In implementing any reef creation projects in accordance with this plan, any permits required for the placement of reef structures within navigable waterways of the Alafia River or Tampa Bay from the U.S. Army Corps of Engineers will be obtained.

Executive Order Number 11514 (34 FR 8693) - Protection and Enhancement of Environmental Quality

A Environmental Assessment has been prepared and environmental coordination is taking place as required by NEPA.

Executive Order Number 11990 (42 FR 26961) - Protection of Wetlands

The identified restoration activities will help ensure the protection of wetlands and the services they provide, in addition to creating new wetlands.

Executive Order Number 12962 (60 FR 30769) - Recreational Fisheries

The identified restoration activities will help ensure the protection of recreational fisheries and the services they provide.

July 21, 2000

9.0 FINDING OF NO SIGNIFICANT IMPACT (FONSI)

Having reviewed the attached environmental assessment and the available information relative to the Restoration Plan, I have determined that there will be no significant environmental impacts from the selected actions. Accordingly, preparation of an environmental impact statement on these issues is not required by Section 102 (2) of the National Environmental Policy Act or its implementing regulations.

60

Date 10/16/00 Willion J. Hopeth

Penelope D. Dalton Assistant Administrator for Fisheries National Marine Fisheries Service National Oceanic and Atmospheric Administration U. S. Department of Commerce

10.0 REFERENCES

10.1 Spill Reports Cited

- Assessment of Fish, Blue Crab, and Pink Shrimp Mortality in the Tidal Portion of the Alafia River Following the December 1997 Process Water Spill. December 10, 1998
- Cardinale, T. 1998. Mulberry Phosphates Inc. December 1997 Acid Spill, Water Quality Impacts on Alafia River and Tampa Bay, May 29, 1998. Hillsborough County Environmental Protection Commission, Hillsborough County, Florida.
- ECOSUMMARY, A Report by the Surface Water Assessment and Monitoring Program (SWAMP), #98-002 (undated)
- Grabe, S. 1997. Initial Impacts of a Phosphoric Acid Spill in the North Prong of the Alafia River, December 1997, on the Benthic Macroinvertebrates of the Lower Alafia River. Hillsborough County Environmental Protection Commission, Tampa, Florida.
- Williges, K, V. Neugebauer, and C. Cook. 1998. An Initial Assessment of the Impacts to Vegetation Resulting from the Alafia River Acid Spill. Florida Department of Environmental Protection – Bureau of Mine Reclamation.

10.2 Literature Cited

- American Fisheries Society. 1992. Investigation and valuation of fish kills. American Fisheries Society Special Publication 24. 96 p.
- Ash, T. and T. Cardinale, Feb. 15, 1999, Alafia River Oyster Bar Restoration Demonstration Project - Final Monitoring Report.
- Bureau of Economic and Business Research. 1997. <u>Florida Statistical Abstract</u>. Warrington College of Business Administration, University of Florida., Gainesville.
- Carr, David W. and Rushton, Betty T., 1995. Integrating a Native Herbaceous Wetland Into Stormwater Management. Stormwater Research Program, Southwest Florida Water Management District, Brooksville FL.
- Dames and Moore, 1975. Hydrobiologic Assessments of the Alafia and Little Manatee River Basins. Hillsborough County, Florida: SWFWMD. June, 1975.
- DEP, 1998a. Florida Boating Registration and Accidents by County. [Online]. Available: <u>http://www.state.fl.us/fwc/law/boating/98stats/vesreg.htm.</u> [2000, July 21].
- EPA, 1998. Decision Document for Technical Approval/Disapproval of TMDL Submitted for Tampa Bay, Florida. June 16, 1998. EPA Region 4, Water Management Division.

- EPA, 1999. Florida Surface Water Quality Report. [Online]. Available: <u>http://www.epa.gov/watrhome/resources/HTML/fl.html.</u> [1999, June 22].
- French, D., M. Reed, K. Jayko, S. Feng, H. Rines, S. Pavignano, T. Isaji, S. Puckett, A. Keller, F.W. French III, D. Gifford, J. McCue, G. Brown, E. MacDonald, J. Quirk, S. Natzke, R. Bishop, M. Welsh, M. Phillips, and B.S. Ingram. 1996. The CERCLA type A natural resource damage assessment model for coastal and marine environments (NRDAM/CME), Technical Documentation, Vol. I Model Description. Final Report, submitted to the Office of Environmental Policy and Compliance, U.S. Dept. of the Interior, Washington, DC, April, 1996, Contract No. 14-0001-91-C-11.
- Harper, H. H., 1995. Pollutant Removal Efficiencies for Typical Stormwater Management Systems in Florida. Proceedings of the 4th Biennial Stormwater Research Conference, October 18-20, 1995. Clearwater, Florida.
- Janicki, A., D.L. Wade. 1996. Estimating Critical nitrogen loads for the Tampa Bay estuary: An empirically based approach to setting management targets. Tech. Pub. #06-96, Tampa Bay National Estuary Program. Prepared by Coastal Environmental, Inc.
- Kadlec, R.H., and R.L. Knight, 1996. Treatment Wetlands. Boca Raton, FL: Lewis Publishers. 893 pp.: ill., maps.
- Kent, M., and P. Coker. 1992. Vegetation Description and Analysis: A Practical Approach. Boca Raton, Florida: CRC Press. 354 pp.
- Richardson, Steven G., Clewell, Andre F., and Johnson, Curt. D. 1994. Tree Establishment on Phosphate Mined Lands in Florida as Affected by Plant Interactions. Paper presented at the International Land Reclamation and Mine Drainage Conference, Pittsburgh, Pennsylvania, April 24-29, 1994.
- Richardson, Steven G. and Johnson, Curt. D. 1998. Forested Wetland Restoration and Nuisance Plant Species Management on Phosphate mind Lands in Florida. Paper presented at the 1998 national Meeting of the American Society for Surface Mining and Reclamation, Saint Louis, MO, May 17-22, 1998.
- Snedecor, G.W., and W.G. Cochran. 1967. Statistical Methods, Iowa State University Press, Ames, Iowa.
- Tampa Bay National Estuary Program, 1996. Charting the Course for Tampa Bay, The Comprehensive Conservation and Management Plan for Tampa Bay (CCMP). 263 pp.
- Tampa Bay National Estuary Program, 1999. The State of the Bay. [Online]. Available: <u>http://www.tbep.org/baystate.html.</u> [1999, June 22].

Tampa Port Authority, 1999. Port of Tampa Fact Sheet, 1 pp.

- Tampa Port Authority, Port of Tampa Statistics, Fiscal Year 1997. [Online]. Available; <u>http://www.tampaport.com/stats.html.</u> [1999, June 15]
- Zarbock, H., A. J. Janicki, D.L. Wade, D Heimbuch, and H. Wilson. 1994. Estimates of total nitrogen, total phosphorus, and total suspended solids loadings to Tampa Bay, Florida. Tech. Pub. #04-94, Tampa Bay National Estuary Program. Prepared by Coastal Environmental, Inc.
- Zarbock, H., A. J. Janicki, and S.S. Janicki. 1996a. Estimates of total nitrogen, total phosphorus, and total suspended solids loadings to Tampa Bay, Florida. Technical Appendix: 1992-1994 total nitrogen loadings to Tampa Bay, Florida. Tech. Pub. #19-96, Tampa Bay National Estuary Program. Prepared by Coastal Environmental, Inc.
- Zarbock, H., A. J. Janicki, and S.S. Janicki. 1996b. Model-based estimates of total nitrogen loading to Tampa Bay. Tech. Pub. #05-96, Tampa Bay National Estuary Program. Prepared by Coastal Environmental, Inc.

APPENDIX A -	DESIGNATED	SPECIES
---------------------	------------	----------------

	Common Name	Scientific Name	State Designation	Federal Designation
Amphibians	Gopher frog	Rana capito	SSC	
Reptiles	American alligator	Alligator mississippiensis	SSC	T(S/A)
	Blue-tail mole skink	Eumeces egregius lividus		Т
	Eastern indigo snake	Drymarchon c. couperi	Т	Т
	Gopher tortoise	Gopherus polyphemus	SSC	
	Sand skink	Neoseps reynoldsi		Т
	Short-tailed snake	Stilosoma extenuatumi	Т	
Birds	American oystercatcher	Haematopus pauiatus	SSC	
	Arctic peregrine falcon	Falco peregrinus tundrius		Е
	Audubon's crested caracara	Polyborus (=Caracara) plancus audubonii		Т
	Bachman's warbler	Vermivora bachmanii		E
	Bald eagle	Haliaeetus leucocephalus		Т
	Black Skimmer	Rynchops niger	SSC	
	Brown pelican	Pelecanus occidentalis	SSC	
	Burrowing owl	Speotyto cunicularia	SSC	
	Florida grasshopper sparrow	Ammodramus savannarum floridanus		Е
	Florida sandhill crane	Grus canadensis pratensis	Т	
	Common Name	Scientific Name	State Designation	Federal Designation

	Florida scrub-jay	Aphelocoma coerulescens	Т	Т
	Ivory-billed woodpecker (probably extinct in south Florida)	Campephilus principalis principalis		Ε
	Limpkin	Aramus guarauna	SSC	
	Little blue heron	Egretta caerulea	SSC	
	Least tern	Sterna antillarum	Т	
	Piping plover	Charadrius melodus	Т	
	Red-cockaded woodpecker	Picoides (=Dendrocopos) borealis		Е
	Snowy egret	Egretta thula	SSC	
	Southeastern American kestrel	Falco sparverius paulus	Т	
	Tricolored heron	Egretta tricolor	SSC	
	White ibis	Eudocymus albus	SSC	
	Wood stork	Mycteria americana	E	Е
Mammals	Florida black bear	Ursus americanus floridanus	Т	С
	Florida mouse	Podomys floridanus	SSC	
	Sherman's fox squirrel	Sciurus niger shermani	SSC	
Marine Mammals	Florida manatee/West Indian Manatee	Trichechus manatus	Е	Е
Plants	Britton's beargrass	Nolina brittoniana	Е	Е

Common Name	Scientific Name	State Designation	Federal Designation
Scrub blazing star	Liatris ohlingerae	Е	E
Wide-leaf warea	Warea amplexifolia	Е	Е
Carter's mustard	Warea carteri	Е	Е
Papery whitlow-wort	Paronychia chartacea (=Nyachia pulvinata)	Е	Т
Florida bonamia	Bonamia grandiflora	Е	Т
Florida golden aster	Chrysopsis floridana		Е
Pigeon wing	Clitoria fragrans	Е	Т
Avon Park harebells	Crotalaria avonensis	E	E
Scrub lupine	Lupinus aridorum	Е	E
Highlands scrub hypericum	Hypericum cumulicola	Е	E
Short-leaved rosemary	Conradina brevifolia	Е	Е
Pygmy fringe-tree	Chionanthus pygmaeus	Е	Е
Lewton's polygala	Polygala lewtonii	Е	E
Scrub buckwheat	Eriogonum longifolium var. gnaphalifolium	Е	Т
Wireweed	Polygonella basiramia (=celiata var. b.)	Е	Е
Sandlace	Polygonella myriophylla	Е	Е

Common Name	Scientific Name	State Designation	Federal Designation
Florida ziziphus	Ziziphus celata	E	Е
Scrub plum	Prunus geniculata	Е	Е
Florida perforate cladonia	Cladonia perforata		Е
Curtiss' milkweed	Asclepias curtissii	Е	
Ashe's savory	Calamintha ashei	Т	
Hand fern	Cheiroglossa palmata	Е	
Scrub mint	Dicerandra frutenscens	Е	Е
Spoon-leafed sundew	Drosera intermedia	Т	
Wedge-leaved button-snakeroot	Eryngium cuneifolium	Е	E
Edison's ascyrum	Hypericum edisonianum	Е	
Star anise	Illicium parviflorum	Е	
Nodding pinweed	Lechea cernua	Т	
Pine pinweed	Lechea divaricata	Е	
Florida spiny-pod	Matelea floridana	Е	
Fall-Flowering ixia	Nemastylis floridana	Е	
Cutthroat grass	Panicum abscissum	Е	
Hartwrightis	Hartwrightia floridana	Т	
Yellow fringeless orchid	Platanthera integra	Е	
Wild coco	Pteroglossaspis ecristata	Т	
Florida willow	Salix floridana	Е	
Rain lily	Zephyranthes simpsonii	Т	
Scrub stylisma	Stylisma abdita	Е	

Common Name	Scientific Name	State Designation	Federal Designation
Brittle maidenhair fern	Adiantum tenerum	Е	
Auricled spleenwort	Asplenium auritum	E	
Tampa vervain	Glandularia tampensis	E	
Chaffseed	Schwalbea americana	E	Е
Broad-leaf nodding- caps	Triphora latifolia	Е	
Perforate reindeer lichen	Cladonia perforata	Е	Е
Sand butterfly pea	Centrosema arenicola	E	

E -Endangered species, T - Threatened species, C - Candidate species, SSC - Species of Special Concern S/A - "similarity of appearance species"

APPENDIX B: pH STATION DATA

APPENDIX B: pH STATION DATA										
DATE	SAMPLING LOCATION	рΗ	AGENCY	STA		DATE	SAMPLING LOCATION	рН	AGENCY	STA
12/07	MPI RAILROAD TRESTLE	2.48	MPI	1		12/09	LITHIA PINECREST (640)	2.97	HCEPC	6
12/09	MPI RAILROAD TRESTLE	2.78	DEP/PM	1		12/09	LITHIA PINECREST (640)	3.11	DEP/PM	6
						12/10	LITHIA PINECREST (640)	3.50	DEP/PM	6
12/07	MULBERRY BRIDGE Hwy. 37	2.33	USEPA	2		12/11	LITHIA PINECREST (640)	5.98	DEP/PM	6
12/07	MULBERRY BRIDGE Hwy. 37	2.60	MPI	2		12/11	LITHIA PINECREST (640)	5.32	MPI	6
12/07	MULBERRY BRIDGE Hwy. 37	2.64	MPI	2		12/12	LITHIA PINECREST (640)	6.48	DEP/PM	6
12/10	MULBERRY BRIDGE Hwy. 37	3.16	DEP/PM	2		12/12	LITHIA PINECREST (640)	6.60	MPI	6
12/11	MULBERRY BRIDGE Hwy. 37	3.31	DEP/PM	2		12/14	LITHIA PINECREST (640)	6.65	MPI	6
12/11	MULBERRY BRIDGE Hwy. 37	3.30	MPI	2		12/15	LITHIA PINECREST (640)	6.56	MPI	6
12/12	MULBERRY BRIDGE Hwy. 37	3.83	DEP/PM	2		12/15	LITHIA PINECREST (640)	6.20	HCEPC	6
12/12	MULBERRY BRIDGE Hwy. 37	3.37	MPI	2		12/15	LITHIA PINECREST (640)	6.37	DEP/PM	6
12/13	MULBERRY BRIDGE Hwy. 37	3.59	MPI	2		12/15	LITHIA PINECREST (640)	6.65	MPI	6
12/14	MULBERRY BRIDGE Hwy. 37	3.35	MPI	2		12/16	LITHIA PINECREST (640)	6.52	MPI	6
12/15	MULBERRY BRIDGE Hwy. 37	3.53	DEP/PM	2		12/16	LITHIA PINECREST (640)	5.66	DEP/PM	6
12/15	•	3.48	MPI	2		12/17	LITHIA PINECREST (640)	6.32	DEP/PM	6
12/16	MULBERRY BRIDGE Hwy. 37	3.39	DEP/PM	2		12/17	LITHIA PINECREST (640)	6.58	MPI	6
12/16	MULBERRY BRIDGE Hwy. 37	3.69	MPI	2		12/18	LITHIA PINECREST (640)	6.49	DEP/PM	6
12/17	MULBERRY BRIDGE Hwy. 37	3.62	DEP/PM	2		12/18	LITHIA PINECREST (640)	6.77	MPI	6
12/17	MULBERRY BRIDGE Hwy. 37	3.60	MPI	2		12/19	LITHIA PINECREST (640)	6.57	DEP/PM	6
12/18	MULBERRY BRIDGE Hwy. 37	3.73	DEP/PM	2		12/21	LITHIA PINECREST (640)	6.91	MPI	6
12/18	MULBERRY BRIDGE Hwy. 37	3.39	MPI	2		12/23	LITHIA PINECREST (640)	6.94	DEP/PM	6
12/19	MULBERRY BRIDGE Hwy. 37	4.29	DEP/PM	2		12/24	LITHIA PINECREST (640)	6.94	DEP/PM	6
12/19	MULBERRY BRIDGE Hwy. 37	3.79	MPI	2		12/29	LITHIA PINECREST (640)	6.39	DEP/PM	6
12/22	MULBERRY BRIDGE Hwy. 37	6.27	DEP/PM	2		12/30	LITHIA PINECREST (640)	6.68	DEP/PM	6
12/22	MULBERRY BRIDGE Hwy. 37	6.30	MPI	2		12/31	LITHIA PINECREST (640)	6.72	DEP/PM	6
12/23	MULBERRY BRIDGE Hwy. 37	6.40	DEP/PM	2		01/02	LITHIA PINECREST (640)	7.10	DEP/PM	6
12/24	MULBERRY BRIDGE Hwy. 37	6.32	DEP/PM	2		01/07	LITHIA PINECREST (640)	7.36	DEP/PM	6
12/24	MULBERRY BRIDGE Hwy. 37	6.30	MPI	2						
12/28	MULBERRY BRIDGE Hwy. 37	6.04	MPI	2		12/09	BELL SHOALS BRIDGE	3.14	HCEPC	7
12/29	MULBERRY BRIDGE Hwy. 37	6.11	DEP/PM	2		12/10	BELL SHOALS BRIDGE	3.41	DEP/PM	7
12/30	MULBERRY BRIDGE Hwy. 37	6.41	DEP/PM	2		12/10	BELL SHOALS BRIDGE	3.20	HCEPC	7
12/30	MULBERRY BRIDGE Hwy. 37	6.45	MPI	2		12/11	BELL SHOALS BRIDGE	5.84	DEP/PM	7
12/31	MULBERRY BRIDGE Hwy. 37	6.55	DEP/PM	2		12/12	BELL SHOALS BRIDGE	6.54	MPI	7
01/02	MULBERRY BRIDGE Hwy. 37	6.61	DEP/PM	2		12/12	BELL SHOALS BRIDGE	6.80	HCEPC	7
01/02	MULBERRY BRIDGE Hwy. 37	6.92	MPI	2		12/12	BELL SHOALS BRIDGE	6.49	DEP/PM	7
01/05	MULBERRY BRIDGE Hwy. 37	6.73	MPI	2		12/15	BELL SHOALS BRIDGE	6.20	HCEPC	7
01/06		6.61	MPI	2		12/15	BELL SHOALS BRIDGE		DEP/PM	7
01/07		6.71	DEP/PM	2			BELL SHOALS BRIDGE	5.70	DEP/PM	7
01/08	MULBERRY BRIDGE Hwy. 37	6.60	MPI	2		12/17	BELL SHOALS BRIDGE		DEP/PM	7
01/12	MULBERRY BRIDGE Hwy. 37	6.59	MPI	2		12/18	BELL SHOALS BRIDGE		DEP/PM	7
01/14	MULBERRY BRIDGE Hwy. 37	6.67	MPI	2			BELL SHOALS BRIDGE		DEP/PM	7
01/16			MPI	2		12/23	BELL SHOALS BRIDGE		DEP/PM	7
01/19		6.63	MPI	2		12/24	BELL SHOALS BRIDGE		DEP/PM	7
01/21		6.65	MPI	2		12/29	BELL SHOALS BRIDGE		DEP/PM	7
01/23			MPI	2		12/30	BELL SHOALS BRIDGE		DEP/PM	7
01/26			MPI	2		12/31	BELL SHOALS BRIDGE		DEP/PM	7

DATE	SAMPLING LOCATION	рН	AGENCY	STA	DATE	SAMPLING LOCATION	pН	AGENCY	STA
01/30	MULBERRY BRIDGE Hwy. 37	6.73	MPI	2	01/02	BELL SHOALS BRIDGE	7.16	DEP/PM	7
01,00		0		_	01/07			DEP/PM	7
12/07	NICHOLS BRIDGE (676)	3.21	MPI	3					-
	NICHOLS BRIDGE (676)	6.36	MPI	3	12/09	US HWY 301 BRIDGE	7.60	HCEPC	8
	NICHOLS BRIDGE (676)		USEPA	3		US HWY 301 BRIDGE		DEP/PM	8
	NICHOLS BRIDGE (676)		DEP/PM	3		US HWY 301 BRIDGE		HCEPC	8
	NICHOLS BRIDGE (676)		DEP/PM	3		US HWY 301 BRIDGE		DEP/PM	8
	NICHOLS BRIDGE (676)		DEP/PM	3		US HWY 301 BRIDGE	3.71	MPI	8
	NICHOLS BRIDGE (676)	3.47	MPI	3		US HWY 301 BRIDGE		HCEPC	8
	NICHOLS BRIDGE (676)	4.01		3		US HWY 301 BRIDGE		DEP/PM	8
	NICHOLS BRIDGE (676)	3.54	MPI	3		US HWY 301 BRIDGE	6.17	MPI	8
	NICHOLS BRIDGE (676)	3.87	MPI	3		US HWY 301 BRIDGE	6.64	MPI	8
	NICHOLS BRIDGE (676)	3.86	MPI	3		US HWY 301 BRIDGE	6.68		8
	NICHOLS BRIDGE (676)		DEP/PM	3		US HWY 301 BRIDGE		HCEPC	8
	NICHOLS BRIDGE (676)	3.78		3		US HWY 301 BRIDGE		DEP/PM	8
	NICHOLS BRIDGE (676)		DEP/PM	3		US HWY 301 BRIDGE	6.49		8
	NICHOLS BRIDGE (676)	4.37	MPI	3		US HWY 301 BRIDGE		DEP/PM	8
	NICHOLS BRIDGE (676)		DEP/PM	3		US HWY 301 BRIDGE	6.61	MPI	8
	NICHOLS BRIDGE (676)	6.10	MPI	3		US HWY 301 BRIDGE		DEP/PM	8
	NICHOLS BRIDGE (676)		DEP/PM	3		US HWY 301 BRIDGE		DEP/PM	8
	NICHOLS BRIDGE (676)	3.58	MPI	3		US HWY 301 BRIDGE		DEP/PM	8
	NICHOLS BRIDGE (676)		DEP/PM	3		US HWY 301 BRIDGE		DEP/PM	8
	NICHOLS BRIDGE (676)	3.86		3		US HWY 301 BRIDGE	-	DEP/PM	8
	NICHOLS BRIDGE (676)		DEP/PM	3		US HWY 301 BRIDGE		DEP/PM	8
	NICHOLS BRIDGE (676)	6.48		3		US HWY 301 BRIDGE		DEP/PM	8
	NICHOLS BRIDGE (676)		DEP/PM	3		US HWY 301 BRIDGE		DEP/PM	8
	NICHOLS BRIDGE (676)	6.51		3		US HWY 301 BRIDGE		DEP/PM	8
	NICHOLS BRIDGE (676)	6.42	MPI	3		US HWY 301 BRIDGE		DEP/PM	8
	NICHOLS BRIDGE (676)	6.44	MPI	3					-
	NICHOLS BRIDGE (676)		DEP/PM	3	12/10	US HWY 41 BRIDGE	8.12	DEP/PM	9
	NICHOLS BRIDGE (676)		DEP/PM	3		US HWY 41 BRIDGE		HCEPC	9
	NICHOLS BRIDGE (676)	6.56	MPI	3	12/11	US HWY 41 BRIDGE	5.75		9
	NICHOLS BRIDGE (676)		DEP/PM	3		US HWY 41 BRIDGE		DEP/PM	9
	NICHOLS BRIDGE (676)		DEP/PM	3		US HWY 41 BRIDGE	3.53		9
	NICHOLS BRIDGE (676)	6.96	MPI	3	12/12	US HWY 41 BRIDGE	6.92		9
			DEP/PM	3	12/12	US HWY 41 BRIDGE	5.00	HCEPC	9
						US HWY 41 BRIDGE		DEP/PM	9
12/07	KEYSVILLE BRIDGE	7.13	MPI	4		US HWY 41 BRIDGE	3.65		9
	KEYSVILLE BRIDGE		HCEPC	4		US HWY 41 BRIDGE		DEP/PM	9
	KEYSVILLE BRIDGE		USEPA	4	12/13	US HWY 41 BRIDGE	6.28		9
	KEYSVILLE BRIDGE		HCEPC	4		US HWY 41 BRIDGE	6.50		9
12/10	KEYSVILLE BRIDGE		DEP/PM	4		US HWY 41 BRIDGE		HCEPC	9
12/11	KEYSVILLE BRIDGE		DEP/PM	4	12/15	US HWY 41 BRIDGE	6.68	DEP/PM	9
	KEYSVILLE BRIDGE	4.02	MPI	4	12/15	US HWY 41 BRIDGE	6.70		9
	KEYSVILLE BRIDGE		DEP/PM	4		US HWY 41 BRIDGE		DEP/PM	9
	KEYSVILLE BRIDGE	6.14		4	12/16	US HWY 41 BRIDGE	6.72		9
12/13	KEYSVILLE BRIDGE	6.36	MPI	4	12/17	US HWY 41 BRIDGE	7.37	DEP/PM	9

DATE	SAMPLING LOCATION	рН	AGENCY	STA	DATE	SAMPLING LOCATION	pН	AGENCY	STA
12/14	KEYSVILLE BRIDGE	6.86	MPI	4	12/18	US HWY 41 BRIDGE	6.57	DEP/PM	9
			DEP/PM	4		US HWY 41 BRIDGE	6.68	DEP/PM	9
12/15	KEYSVILLE BRIDGE	8.10	HCEPC	4	12/22	US HWY 41 BRIDGE	6.85	MPI	9
	KEYSVILLE BRIDGE	6.48	MPI	4	12/22	US HWY 41 BRIDGE	6.76	DEP/PM	9
	KEYSVILLE BRIDGE	5.51	DEP/PM	4	12/23	US HWY 41 BRIDGE	7.07	DEP/PM	9
12/16	KEYSVILLE BRIDGE	6.30	MPI	4	12/24	US HWY 41 BRIDGE	7.24	DEP/PM	9
12/17	KEYSVILLE BRIDGE	6.17	DEP/PM	4	12/29	US HWY 41 BRIDGE	6.86	MPI	9
12/17	KEYSVILLE BRIDGE	6.29	MPI	4	12/29	US HWY 41 BRIDGE	6.95	DEP/PM	9
12/18	KEYSVILLE BRIDGE	6.38	DEP/PM	4	12/30	US HWY 41 BRIDGE	7.17	DEP/PM	9
12/18	KEYSVILLE BRIDGE	6.54	MPI	4	12/31	US HWY 41 BRIDGE	6.85	DEP/PM	9
12/19	KEYSVILLE BRIDGE	6.12	DEP/PM	4	01/02	US HWY 41 BRIDGE	7.38	DEP/PM	9
12/19	KEYSVILLE BRIDGE	6.02	MPI	4	01/07	US HWY 41 BRIDGE	7.71	DEP/PM	9
12/22	KEYSVILLE BRIDGE	6.59	MPI	4					
12/23	KEYSVILLE BRIDGE	6.51	DEP/PM	4	12/09	POLEY CREEK (60)	6.61	DEP/PM	10
12/23	KEYSVILLE BRIDGE	6.60	MPI	4					
12/24	KEYSVILLE BRIDGE	6.53	DEP/PM	4	12/09	ENGLISH CREEK (60)	7.23	DEP/PM	11
12/24	KEYSVILLE BRIDGE	6.60	MPI	4					
12/28	KEYSVILLE BRIDGE	6.79	MPI	4	12/09	30 MILE CREEK (676)	6.92	DEP/PM	12
12/29	KEYSVILLE BRIDGE	6.64	DEP/PM	4					
12/30	KEYSVILLE BRIDGE	6.54	DEP/PM	4	12/10	LITTLE ALAFIA (TURKEY CR.)	7.28	DEP/PM	13
12/30	KEYSVILLE BRIDGE	6.61	MPI	4					
12/31	KEYSVILLE BRIDGE	6.62	DEP/PM	4	12/16	SKINNED SAPLING CRK BKGD.	6.41	MPI	14
01/02	KEYSVILLE BRIDGE	6.78	DEP/PM	4	12/18	SKINNED SAPLING CRK BKGD.	6.40	MPI	14
01/02	KEYSVILLE BRIDGE	6.98	MPI	4	12/21	SKINNED SAPLING CRK BKGD.	6.50	MPI	14
01/07	KEYSVILLE BRIDGE	7.02	DEP/PM	4	12/23	SKINNED SAPLING CRK BKGD.	6.48	MPI	14
					12/28	SKINNED SAPLING CRK BKGD.	6.08	MPI	14
12/07	ALDERMAN'S FORD BRIDGE	7.03	USEPA	5	12/30	SKINNED SAPLING CRK BKGD.	6.53	MPI	14
12/07	ALDERMAN'S FORD BRIDGE	7.21	MPI	5	01/02	SKINNED SAPLING CRK BKGD.	6.76	MPI	14
12/08	ALDERMAN'S FORD BRIDGE	7.20	HCEPC	5	01/05	SKINNED SAPLING CRK BKGD.	6.70	MPI	14
12/08	ALDERMAN'S FORD BRIDGE	6.73	USEPA	5	01/06	SKINNED SAPLING CRK BKGD.	6.65	MPI	14
	ALDERMAN'S FORD BRIDGE			5	01/08	SKINNED SAPLING CRK BKGD.	6.34	MPI	14
				5	01/12	SKINNED SAPLING CRK BKGD.	6.69	MPI	14
-	ALDERMAN'S FORD BRIDGE			5	01/14	SKINNED SAPLING CRK BKGD.	6.74		14
	ALDERMAN'S FORD BRIDGE			5		SKINNED SAPLING CRK BKGD.	6.45		14
	ALDERMAN'S FORD BRIDGE			5		SKINNED SAPLING CRK BKGD.	6.72		14
	ALDERMAN'S FORD BRIDGE			5		SKINNED SAPLING CRK BKGD.	6.77		14
	ALDERMAN'S FORD BRIDGE		DEP/PM	5		SKINNED SAPLING CRK BKGD.	6.68		14
	ALDERMAN'S FORD BRIDGE		MPI	5		SKINNED SAPLING CRK BKGD.	6.61	MPI	14
	ALDERMAN'S FORD BRIDGE			5	01/30	SKINNED SAPLING CRK BKGD.	6.82	MPI	14
	ALDERMAN'S FORD BRIDGE			5					
	ALDERMAN'S FORD BRIDGE			5					\vdash
	ALDERMAN'S FORD BRIDGE			5					
	ALDERMAN'S FORD BRIDGE			5					\parallel
	ALDERMAN'S FORD BRIDGE			5					
	ALDERMAN'S FORD BRIDGE			5					\square
	ALDERMAN'S FORD BRIDGE			5					\vdash
12/17	ALDERMAN'S FORD BRIDGE	6.31	DEP/PM	5			1		

DATE	SAMPLING LOCATION	рН	AGENCY	STA	DATE	SAMPLING LOCATION	рН	AGENCY	STA
12/17	ALDERMAN'S FORD BRIDGE	6.45	MPI	5					
12/18	ALDERMAN'S FORD BRIDGE	6.54	DEP/PM	5					
12/18	ALDERMAN'S FORD BRIDGE	6.71	MPI	5					
12/19	ALDERMAN'S FORD BRIDGE	6.90	DEP/PM	5					
12/22	ALDERMAN'S FORD BRIDGE	6.78	MPI	5					
12/22	ALDERMAN'S FORD BRIDGE	6.87	MPI	5					
12/23	ALDERMAN'S FORD BRIDGE	6.85	DEP/PM	5					
12/24	ALDERMAN'S FORD BRIDGE	6.87	DEP/PM	5					
12/29	ALDERMAN'S FORD BRIDGE	6.58	DEP/PM	5					
12/30	ALDERMAN'S FORD BRIDGE	6.68	DEP/PM	5					
12/31	ALDERMAN'S FORD BRIDGE	6.75	DEP/PM	5					
01/02	ALDERMAN'S FORD BRIDGE	7.05	DEP/PM	5					
01/07	ALDERMAN'S FORD BRIDGE	7.31	DEP/PM	5					

APPENDIX C: SUMMARY OF PROJECT PROPOSALS FOR TOP 5 RESTORATION ALTERNATIVES

Restoration Alternative	Project Description	Proposed by:
Reef Creation	Reef Balls TM	MPI
	Fossilized oysters as reef habitat	EPC
	Existing EPC Artificial Reef Sites	EPC
	Snags, logs, etc. in freshwater river habitats	FGFC
Riverine Restoration	Wetlands west of Hwy. 37 and east of Diesel Road	MPI
	Skinned Sapling Creek from the confluence at the North Prong of the Alafia River to Bonnie Mine Road	BOMR
	Poly Creek wetlands between SR 37 and Hillsborough County Line	Polk County
	Flood Plains and Forested Riparian Habitat along the Agrifos Inc. Property along the North Prong of the Alafia River	BOMR
	Wetlands of the Ellis Branch tributary of the North Prong of the Alafia River	BOMR
	"Balm Boyette" Property owned by SWFWMD	SWFWMD
	Plant emergent freshwater vegetation at selected sites along river	ARBSC/Dr. Nick Ehringer
Surface Water Improvement	Install permanent water quality monitoring stations along the Alafia River	DEP
	Fund Stream-Waterwatch, a community-based water quality monitoring	ARBSC
Estuarine Restoration	North bank Alafia River at crossing of Tampa Electric power line	FL Audubon
	Emergent tidal marsh habitat at "the Kitchen": Dug Creek, Davis tract and Port Redwing tract	SWFWMD
	Transplant seagrass at select locations in the Alafia River	ARBSC/Dr. Nick Ehringer
Land Acquisition	Wayne Thomas Property (@1000 acres) located along the main channel of the Alafia river from Bell Shoals to Lithia Springs County Park	Hillsborough County Planning Commission
	Lithia and Buckhorn Springs (acreage unknown) Both sites are located on the main channel of the Alafia River.	Hillsborough County Planning Commission
	Simmons Tract (@60 acres) Part of Balm Scrub tract.	Hillsborough County Planning Commission

Restoration Alternative	Project Description	Proposed by:
Land Acquisition	AGRIPHOS (@600 acres) Located on the north prong of the Alafia River (impacted by spill).	Hillsborough County Planning Commission
	Gooch property (@400 acres) Located on the north prong of the Alafia River	Hillsborough County Planning Commission
	IMC AGRICO/Jameson Road (@500 acres) Located on the south prong of the Alafia River	Hillsborough County Planning Commission

APPENDIX D: SUMMARY OF COMMENTS BY THE RESPONSIBLE PARTY AND AGENCIES' RESPONSE

Since the inception of the natural resource damage assessment process for this incident, MPI representatives have had an ongoing opportunity to comment on the assessment being undertaken by the Agencies, including the development of the Draft Damage Assessment and Restoration Plan and Environmental Assessment (Draft DARP) released to the public on July 22, 1999. The following is a summary of the comments submitted by or on behalf of MPI during the assessment and restoration planning process through August 21, 1999, the end of the public comment period on the Draft DARP, and a summary (provided in *italics*) of the Agencies' response to each comment. All comments submitted by MPI during this period have been duly considered by the Agencies in the assessment process for this incident.

The order of listing below does not reflect the order in which these comments were received from MPI. MPI has provided comments on numerous occasions and, on some topics, has submitted the same or similar comments on more than one occasion. In the following list, redundant comments appear as a single comment for purposes of response and the Agencies have sought to generally group comments on related topics together.

I. MPI COMMENTS RELATED TO RESPONSE ACTIVITIES

Comment: MPI requested that the Draft DARP/EA be changed to reflect that MPI carried out all response actions and that EPA, DEP, and EPC did nothing to stop the spill.

Response: The final DARP/EA has not been changed based on this comment. Under the authorities applicable to this incident, "response" encompasses a broader range of activities than MPI's comment would allow. It includes actions of appropriate agencies in monitoring, assessing, and evaluating the release and its risks to the environment and to humans, in warning or otherwise acting to protect the public during the event, coordinating with MPI, and overseeing MPI's actions in responding to the event. EPA, FDEP and EPC were active participants in this spill response.

Comment: MPI requested that the document be changed to make clear that the EPA and FDEP did not allow MPI to introduce neutralizing agents into the river.

Response: The final DARP/EA has not been changed based on this comment. In the damage assessment process, resource injuries or service losses attributable to MPI include any which may be an outcome of response decisions. Details regarding the basis for response decisions or an RP's critique of such decisions does not serve any of the purposes of a DARP/EA.

II. MPI COMMENTS ON POTENTIAL NATURAL RESOURCE INJURIES OR LOSSES

Comment: MPI states the Agencies cannot attempt to assess a non-quantified injury, or provide a restoration plan or strategy for a non-quantified injury.

Response: The Agencies are not seeking compensation for any non-quantified natural resource injury or loss. The ability to restore, replace or provide resources or services comparable to the quantified injuries or losses has been the primary criterion used to identify and evaluate restoration alternatives in this assessment process. In choosing the best approach to restoration of those losses, however, it is both prudent and appropriate to consider the benefits of restoration to other natural resources, particularly those known or likely to have also been injured as a result of this spill. This is consistent with the guidance for restoration planning found in both the natural resource damage assessment regulations under CERCLA and OPA.

Comment: MPI commented that the section entitled "Natural Resources and Resource Services with Significant Potential for Injury" (2.5 of the Draft DARP/EA) should be deleted from the document.

Response: The Agencies disagree. This and other related sections in the DARP/EA provide information to the public about other resources or resource services considered or evaluated by the Agencies in this assessment process. The Agencies believe the public is entitled to know the Agencies' decisions or strategies regarding these other resources or services, whether or not injuries were confirmed or further action to quantify those losses was undertaken.

Comment: MPI comments that it believes that Agency actions reflected in the Draft DARP/EA do not comply with 43 C.F.R. Part 11 and violate the common law concepts of tort. Specifically, MPI asserts the Agencies are pursuing resource 'injuries' that either not cognizable as natural resource injuries (e.g. nutrient loading) or have no evidence to support a finding of injury (e.g. birds). MPI further asserts the Agencies are attempting to compensate for "artificial or unsubstantiated injuries" in selecting restoration actions, at the expense of the natural resources which were actually injured, such as fish.

Response: The Draft DARP/EA served to summarize the assessment of public claims being coordinated and implemented jointly by five (5) agencies. As such, the document addressed all injuries or losses to natural resources appropriate for assessment under federal law, state law(s), or a combination thereof. Contrary to MPI's comment, there is a factual and legal basis under state law for finding injury to surface waters owing to the large amounts of phosphorus and nitrogen added to the Alafia River and Tampa Bay by this spill, as identified in the Draft DARP/EA. For this reason, the Agencies disagree with MPI that such injury to surface waters should not be included in this joint assessment document or considered in defining restoration-based compensation for this injury. The final DARP/EA has not been changed based on this comment.

The Agencies also do not share MPI's view that the goal of compensating for assessed resource injuries or losses has been compromised in the identification of the preferred restoration alternatives. The first and foremost consideration of the Agencies in the restoration planning process has been to identifying restoration actions which would function to restore, replace or acquire resource services comparable to those lost as a result of the injuries to freshwater wetlands, fishery resources, and surface waters caused by the spill. The scale of the restoration required to compensate the public for these losses are also only to be determined based on those service losses. Choosing the best approach to restoration of lost resource services from among a range of alternatives, however, necessarily takes into account other factors or considerations. These include the potential effect of

restoration actions on other natural resources. In evaluating different approaches to restoring lost services, the Agencies believe it is wholly appropriate to consider potential benefits to other natural resources likely or known to have been injured by the spill event, even though further assessment of these injuries was not warranted. This is consistent with guidance for the conduct of assessment and restoration planning found in 43 C.F.R. Part 11 (e.g., 43 C.F.R. §11.82(d) indicating "all relevant considerations" and listing factors to be included in identifying restoration alternative to pursue) as well as NEPA.

Comment: With respect to birds, MPI has repeatedly asserted that the Agencies are attempting to create an injury for which there is no reliable, supporting data and has repeatedly requested that text in the Draft DARP/EA on Birds be deleted. In support of these requests, MPI states there is no basis under the NRDA regulations for addressing speculative, non-quantified injuries.

Response: The Agencies are not asserting a claim for natural resource damages based on injuries to birds. Although the Agencies believe migratory birds may have suffered injury indirectly as a result of the spill, the Agencies did not seek to further assess or quantify any injuries to birds. This decision was based on a number of factors, including that restoration objectives for any such bird injuries would likely be met through restoration planning to address the other, more direct resource injuries attributable to the spill. The text sections in the DARP/EA serve to inform the public of the Agencies' decisions or strategies with respect to the potential bird injuries. The final DARP/EA has not been changed based on this comment.

Comment: With respect to recreational fishing losses, MPI has asserted that the Agencies are attempting to create an injury for which there is no reliable supporting data and has repeatedly requested that text in the Draft DARP/EA on Recreational Fishing Losses be deleted. In support of these requests, MPI states there is no basis under the NRDA regulations for addressing speculative, non-quantified injuries.

Response: The Agencies are not asserting a claim for natural resource damages based on recreational fishing losses. Although the fish kill was sufficient in kind and degree to indicate recreational fishing losses may also have occurred, the Agencies did not seek to further assess or quantify those losses, in part because the Agencies recognize restoration to replace the lost fish is also likely to comparably replace lost fishing services. The text sections in the DARP/EA serve to inform the public of the Agencies' decisions or strategies with respect to the potential recreational fishing losses. The final DARP/EA has not been changed based on this comment.

Comment: MPI concurred with the Agencies' view that record rainfall immediately following the spill overshadowed the determination of recreational fishing losses during the spill event.

Response: The Agencies remain of the view that the locally heavy rains immediately following the spill greatly reduced the opportunity for recreational fishing losses during that period.

Comment: MPI comments that a restoration project that has the greatest potential for fish biomass production would also benefit any potential recreational fishing losses.

Response: The Agencies agree. Habitat restoration which addresses the fish biomass lost will also likely offset any potential recreational fishing losses by increasing the opportunity for recreational anglers to catch fish in the future.

Comment: Because there was no evidence of any injury to wildlife, MPI commented that the Draft DARP/EA should not include any reference to wildlife.

Response: The references to wildlife in the Draft DARP/EA are minimal and consistent with the function of this document an Environmental Assessment. The final DARP/EA has not been changed based on this comment.

III. MPI COMMENTS RELATED TO FRESHWATER VEGETATION INJURIES

Comment: MPI requested that the Agencies modify the Draft DARP/EA to make clear that vegetation injuries were limited to Polk County.

Response: *Text in the final DARP/EA was edited to clarify the vegetation losses occurred in Polk County.*

Comment: MPI commented that the majority of vegetative injury may not be "natural resources injury" which the Agencies can address on behalf of the public because the injured vegetation was on private property.

Response: The Agencies disagree. Under CERCLA, public claims for natural resource damages are maintainable for the injury, loss or destruction of natural resources "belonging to, managed by, held in trust by, appertaining to or otherwise controlled by" the federal government or a state. 42 U.S.C. §9601(16). Such claims are not determined solely by the ownership of land where such resources are found. The freshwater vegetation losses caused by the spill occurred in areas that are subject to a substantial degree of regulation, management or control by one or more state and federal agencies, including due to their character as wetlands, navigable waters, flood plain areas, or habitats for migratory birds and other protected or managed wildlife.

Comment: MPI also asserts it has settled claims with a number of private property owners and that further efforts by the Agencies to receive compensation for vegetation losses will constitute double recovery.

Response: The DARP/EA is assessing damages for the interim loss of the ecological services of the freshwater wetland vegetation arising from its direct injury by the spill. These service losses result from that vegetation injury, whether the injury occurs on private or publically owned lands. Public compensation for those interim service losses (pending recovery or restoration of the injured vegetation) is authorized under CERCLA, the CWA and applicable state laws. In this assessment, compensation for those interim losses is defined based on actions appropriate to restore or replace ecological services like those lost. Such "compensatory restoration" serves the objectives of the public claim, i.e., to make the public and the environment whole for the interim service losses that occurred.

The Agencies have no information from MPI or any other source to indicate that any private property claims, whether paid by MPI or not, are related to or overlap in any way with the public claim for freshwater vegetation service losses being addressed in this assessment. Further, the scope of public and private damages are reasonably distinct. The Agencies believe there is little likelihood private claims related to this spill actually overlap with the public claim, since as the former generally assert diminished property values, lost use or enjoyment of property by owners, lost profits, or other property-based or economic claims, rather than the replacement of ecological services lost pending resource recovery.

Comment: MPI believes the death of "invasive and nuisance" vegetative species should not be characterized as a natural resource injury. MPI's indicates the die-off of such vegetation should be considered a benefit to the environment, rather than a negative effect, resulting from the spill. MPI suggests that a compromise would be to consider the death of such vegetation neutral in terms of environmental effect.

Response: The loss of ecological services provided by "invasive and nuisance" vegetation (e.g., nutrient uptake, flood retention) is a natural resource injury. The loss of these functions, even for a short period of time, is an adverse effect of the spill, not a positive or neutral impact to these natural resources. That other or better arrays of vegetative species may provide a more desirable mix of ecological services in a given environmental setting does not equate to a no-injury determination, but may be taken into account in planning restoration to compensate for these interim service losses.

Comment: MPI has asserted that natural restoration of affected vegetation occurred very quickly following the spill. MPI cites the Spring 1999 field trips as supporting the view that ground cover had already recovered to pre-spill or better conditions in the vastmajority of the area. MPI thus indicated the recovery period should be one year with a linear function, and that the function is clearly not linear if two years is used. MPI also suggests that the appropriate recovery value is three years for sub-canopy.

Response: The Agencies disagree with the view that the injured vegetation fully recovered very soon after the spill. The Spring 1999 survey confirmed species comprising vegetative ground cover were returning fairly quickly but also indicated subcanopy vegetation was recovering at a slower rate and that the recovery of canopy vegetation was only beginning and likely to take some time. Based on all information available, the Agencies are of the view that full recovery to pre-spill conditions will take about 2 years for ground cover species, 5 years for subcanopy species, and 20 years for canopy species.

Comment: MPI has asserted that in all areas surveyed in the Spring of 1999, vegetative diversity was greater than the pre-spill conditions in these areas. With respect to this increase in diversity, MPI has suggested it should be awarded some restoration credit for these effects.

Response: Although its unlikely to be a durable feature in the recovering habitats, the Agencies acknowledge that recovering vegetation in some areas was showing greater diversity in the Spring of 1999 than pre-spill. It is not considered in defining the losses for which MPI is responsible, however. In this assessment, the Agencies are basing compensation on the vegetation actually killed by the

spill. The service loss for an impacted area is the dead vegetation cover, expressed as a percentage of total cover. Full services to an impacted area are regained when full recovery is achieved (based on the return of complete cover in these areas). The fact that the natural return of full cover may or may not be accompanied by greater vegetative diversity does not affect the losses which occurred and for which compensation is to be sought. Compensation is being based only on the spill-induced resource losses. The use of a diversity measure in restoration scaling, however, does allow the Agencies to take into account the improved quality of vegetative services provided by habitat restoration to address the vegetative losses, which will minimize the restoration scale required to compensate for the interim losses.

MPI Comment: MPI disagreed with a statement in the Draft DARP/EA indicating the death of canopy species resulted in a loss of physical structure and photosynthetic production. MPI pointed out that most, if not all, of the physical structure provided by the canopy species is still present and will be so for several years. MPI believes lost photosynthetic production was likely more then compensated for by increased photosynthetic production by the ground cover, which flourished due to the increased sunlight reaching the ground.

Response: The final DARP/EA has been revised to base the injury to canopy on the lost vegetative cover, not on lost physical structure or production. The increased ground cover production due to the loss of canopy species is covered in the assessment, which considers the recovery of all ground cover services complete as soon as 100% ground cover in dead areas is achieved.

MPI Comment: In comments on early drafts of the Draft DARP/EA, MPI raised a number of issues with the quantification of vegetation injuries:

MPI stated that the Hill's ratio is a measure of evenness, not diversity;

MPI indicated they did not concur with the scaling approach being proposed to address subcanopy or canopy losses; and,

MPI stated that the inclusion of shrubs and vines in the ground cover grouping was not appropriate. MPI believes that by averaging the three layers you end up not taking into account the spatial nature of the data or its potential overlap.

Response: The agencies revised language in the final DARP/EA to reflect that the Hill's ratio is a measure of evenness. However, the final DARP/EA has not been revised to reflect MPI's other comments regarding the quantification of vegetation injuries. In subsequent comment letters to the agencies, MPI indicates it believed the Agencies' dividing of the impacted vegetative areas into Area A and Area B and further subdividing these areas into injured ground cover, subcanopy and canopy areas appeared reasonable. MPI also states the use of Hill's index for measuring habitat diversity and quality is appropriate for ground cover type data. The Agencies agree.

Comment: In commenting on an early draft of the Draft DARP/EA, MPI stated it was not clear how the canopy species would be restored or scaled. In addition, MPI felt the Draft DARP/EA needed to explain which species and size of trees constituted canopy and how the acreage of injured canopy communities were determined.

Response: The Agencies revised the Draft DARP/EA to clarify the species constituting the canopy grouping and how canopy injuries would be addressed in restoration scaling prior to its release to the public.

Comment: MPI has stated that they do not believe mixed forested wetlands would be the appropriate form of restoration to address the injury to freshwater wetland vegetation because forested wetlands provide very little opportunity for water quality improvement. MPI indicates that their plan to enhance herbaceous wetland is the most beneficial project to address the injury to vegetation.

Response: The Agencies believe that creation or enhancement of a mixed forest wetland is a form of riverine habitat restoration appropriate to address vegetation losses due to its ability to control nuisance species in the long term while providing water quality improvement services. As stated in the Draft DARP/EA, a riverine habitat project dominated by herbaceous vegetation presents a greater risk of reverting to undesirable or nuisance species over time and, accordingly, may necessitate more restoration monitoring or maintenance. Herbaceous wetland creation or enhancement remains within the riverine habitat restoration alternative, however, and will be considered further in evaluating and selecting a restoration project consistent with this DARP/EA.

Comment: MPI has noted that their restoration proposal in Polk County is consistent with the restoration of riverine habitat alternative identified in the Draft DARP/EA.

Response: The Agencies agree that MPI's proposal generally fits this restoration category or type.

IV. MPI COMMENTS RELATED TO SURFACE WATER INJURIES

Comment (addressing pH based injury): MPI commented that the Draft DARP/EA did not correctly quote the pH standard and suggested that this may result in misrepresentations of the data. Specifically, MPI noted that the lower value of pH is not an absolute 6.0 standard units, particularly when the background value is below 6.0 standard units. Where the background is lower than 6.0 units, the pH value shall not fall below background. MPI also suggested that because the pH of rain is typically around 5.4 standard units, the heavy El Nino rains may have resulted in low pH values.

Response: MPI is correct that background values do affect the application of the lower pH value identified in the state standard. The criteria states that in Class III waters (the Alafia River is a Class III water body) the pH shall not vary more than a standard unit below the background and, further, that if background values are below 6.0 units, the value shall not fall below background. The final DARP/EA has been edited in an effort to clarify the standard, however, it does not affect the Agencies' injury determination. Monitoring data show that the spill lowered pH values up to 4 units below background at some stations. The Agencies also disagree that rainfall could have resulted in

pH values lower than 6.0 based on an examination of the data. The pH data presented in Appendix B, which includes those collected by MPI and other agencies, as well as the Environmental Protection Agency's (EPA) STORET database, indicates that there were no surface water background values below 6.0 units before the acid plume arrived. The EPA STORET database includes numerous water bodies other than the Alafia River in Hillsborough County.

Comment (addressing nutrient loading): MPI believes that any determination of surface water injury in this assessment based on the introduction of nutrients is invalid and that all discussion of this injury should be removed from the DARP/EA. MPI characterizes the cited state criterion as "nebulous" because it uses the term "imbalance" and because it is a narrative rather than numeric standard. MPI comments that the narrative is not defined in state or federal regulations or case law and that nutrient loading is not identified as a potential injury in the natural resource damage assessment regulations. Further, it notes the difficulty in determining or establishing the existing natural population balance.

Response: The final DARP/EA has not been changed based on these comments. The Agencies have found there is a factual and legal basis for finding injury to surface waters based on the several hundred tons of phosphorus and nitrogen added to the Alafia River and Tampa Bay by this spill. The evidence available to the Agencies (EPC's chlorophyll A data) indicates that this substantially increased phytoplankton populations in areas of the river and the bay for several months following the spill. This data includes 24 years of data indicative of baseline phytoplankton populations in the affected areas. The addition of these nutrient substances with this documented result contravened a state water quality criterion providing that "In no case shall nutrient concentrations of a body of water be altered so as to cause an imbalance in natural populations of aquatic flora or fauna." *F.A.C. Rule* 62-302-530(48)(b). This effect is also known to be detrimental to other resources in this system. Applicable state laws allow a public claim for damages to be asserted for this resource injury.

Federal regulations at 43 C.F.R. Part 11 may serve as a source of guidance on the conduct of natural resource damage assessments under authorities other than CERCLA, at the discretion of the agencies. The assessment, however, must still be conducted in a manner consistent with the laws governing the particular claim. The Agencies determination and assessment of the surface water injury is consistent with the guidance found in the federal regulations at 43 C.F.R. Part 11, to the extent also consistent with the state law basis for this claim. The spill altered the chemical and physical quality of these receiving surface waters in a manner which was adverse to an applicable state water quality criterion and known to be detrimental to other natural resources in this system. The finding is consistent with both the general definition of 'injury' at 43 C.F.R. §11.14(v) and the more particular guidance regarding injury to surface water resources at 43 C.F.R. §11.62(b)(1)(iii) and (v). The latter provides for a determination of injury when a departure from an applicable water quality criterion occurs or the altered quality is harmful to other resources.

The Agencies are also not persuaded that cited water quality criterion is invalid due either to its narrative character or its description of the prohibited alteration. The Agencies found the standard expressed to be clear on its face and a violation of its terms clearly indicated by available evidence. **Comment (addressing nutrient loading):** MPI has proffered several comments on the Agencies'

injury assessment. MPI notes the Agencies were required to establish a pathway or link between the discharge and the asserted injury. MPI states substantial discharges of nutrients from sources unrelated to MPI occurred during this period and argues these other sources of nutrients to the river and bay at the time of the spill need to be excluded as causes or otherwise accounted for in the injury assessment. MPI asserts extreme events like El Nino conditions make determination of baseline populations more difficult and that, given the rainfall and flooding in the region during and after the spill, it was inappropriate for the Agencies to attribute all the increase in Chlorophyll "a" to the spill. MPI argues the Chlorophyll "a" data cannot be applied to the state criterion because it does not distinguish between aquatic species. Finally, MPI feels the injury assessment does not take into account the natural recovery of the surface water owing to its dilution by the record rainfall and water levels during the spill.

Response: The spill directly discharged nitrogen- and phosphorous-laden process water into the surface waters of the Alafia River and Tampa Bay and that constitutes the pathway for this injury. The link between the nitrogen and phosphorous loadings and the increase in phytoplankton populations is established through the Chlorophyll "a" data and is documented in several technical documents referenced in the DARP/EA. The Agencies considered other contributors of nutrients within the Alafia River basin during this period but found the spill to be the most significant factor accounting for the changes in phytoplankton populations in the river and the bay in the months following the spill. Nutrient data from the spill was compared to nutrient data for the month of December 1997 from municipal and industrial wastewater sources within the Alafia River Basin. This comparison indicates that the nutrient contribution from the spill was overwhelming compared to all other wastewater discharges combined for that period. The Agencies also found the spill released 10 and 24 times, respectively, of the amount of nitrogen and phosphorous contributed by all other sources within the Alafia River basin and was responsible for 89% of all nitrogen and 96% of all phosphorous entering Tampa Bay from the Alafia River basin during this period.

The rainfall in the region during and after the spill may have reduced the nutrient concentrations in surface waters but it did not affect the quantity released and, based on the available evidence, was not sufficient to prevent the injury to surface waters due to the release of these nutrients from occurring. The nutrient-related surface water injuries were detected and radiated out from areas influenced by contributions from the Alafia River basin whereas the record rains occurred and would have influenced conditions throughout the Tampa Bay estuary equally and simultaneously.

Finally, the state water quality criterion does not discriminate or differentiate by aquatic species in prohibiting population imbalances. The Agencies, therefore, found no rational basis for concluding the Chlorophyll "a" data could not be considered under this state rule based on its failure to discriminate or differentiate between phytoplankton species.

Comment (addressing nutrient loading): MPI disagrees with the scaling approach proposed by the Agencies to define restoration-based compensation for the surface water injury. MPI feels the approach does not adequately take natural recovery of the surface waters into account. MPI believes heavy rains would have flushed the nutrients from the Alafia River and probably also Tampa Bay and, further, that the approach also does not account for natural uptake of released nutrients by wetlands. MPI also disagrees with the use of nitrogen as a scaling metric for the surface water injury, in part

because the method does not apportion the injury based on various nutrient contributors during the El Nino rains. MPI asserts the assessment method is neither accurate or cost-effective.

Response: The data collected by EPC do not indicate the heavy rains during the spill period effectively flushed the released nutrients out of Tampa Bay. Rather, the data show increases in Chlorophyl "a" concentrations beginning at the mouth of the Alafia River and radiating into Tampa Bay for several months following the spill, a period when light, nutrient, and Chlorophyl "a" levels in the bay are normally at their lowest. Chlorophyl "a" concentrations began to return toward levels typical for the period around March of 1998. The Agencies view nitrogen uptake by wetland vegetation as a di minimus consideration in the assessment of this surface water injury. The death of wetland vegetation exposed to the spill and the increased surface water flow rates associated with the spill and locally heavy rains diminished the opportunity for effective uptake during the event and any potential uptake of released nutrients was clearly inadequate to prevent the injury from occurring. The scaling approach selected by the Agencies also narrows the role of natural recovery issues in determining compensation requirements.

The scaling method identified by the Agencies allows restoration costs to address the injury to be based only on MPI's release of nutrients to the affected system. This approach is fair to MPI. Further, the Agencies use of the nitrogen released as the metric for restoration scaling favors MPI as the Agencies estimate MPI released a far greater quantity of phosphorous than nitrogen (3,336,800 pounds of phosphorous as compared to 735,534 pounds of nitrogen; MPI's phosphorus release was more than 24 times the phosphorous contributed by all other permitted point sources in the Alafia River basin during December 1997). The Agencies consider nitrogen to be the more appropriate scaling metric because it is generally regarded as the nutrient which is key to regulating or limiting the growth of phytoplankton populations in Tampa Bay surface waters.

The use of historic and post-spill data to determine surface water injuries and restoration-based compensation is, in the judgment of the Agencies, the most cost-effective assessment approach available. In this instance, existing information was sufficient to support both the injury determination and restoration scaling and the Agencies found additional field studies were neither necessary or likely to have resulted in greater accuracy in the assessment. Under these circumstances, the Agencies judged additional studies, including additional costs associated therewith, were not justified and that the identified approach was the most cost-effective. The Agencies did not sacrifice assessment accuracy in making this determination as the approach being used by the Agencies determines the compensation required on the actual release of nutrients to the system by MPI and additional studies would likely not have provided a more accurate basis for scaling.

Comment: MPI requested that the Agencies remove references to natural resource damages or measurable injuries to Tampa Bay.

Response: Tampa Bay was the ultimate receiving body of water for the spilled process water. The Agencies believe the spill resulted in a documented injury (imbalance of phytoplankton populations) to surface waters in Tampa Bay which is appropriately included in this DARP/EA.

V. MPI COMMENTS RELATED TO FISH, SHRIMP AND CRAB INJURIES

Comment: MPI comments that the Draft DARP/EA is unclear as to how the scaling process for fishery resources will process and how FMRI data will be used in conjunction with the NRDAM/CME, version 2.5 model which is proposed for use in the Draft DARP/EA.

Response: The Draft DARP/EA served to identify and describe the methodologies proposed for use in the assessment process and to allow consideration of and comment on their suitability for use in this assessment. MPI's comments bear on details regarding the implementation of the proposed methods which are generally addressed and documented later in the assessment process. Clarification of these issues in the Draft DARP/EA was not required and the final DARP/EA has not been changed based on these comments.

Comment (relating to FMRI injury assessment & report): In commenting on FMRI field investigations of and report on the fish losses, MPI asserts FMRI's methods were not consistent with the American Fisheries Society protocols.

Response: AFS methodological protocols represent guidelines. AFS describes them as such and acknowledges the role of professional judgment in defining or implementing specific studies. Each kill is unique and requires adaptation of general methods, consistent with the basic principles of area sampling. In a fish kill, dead fish are scattered over an extended area of water. The numbers of dead fish are estimated from sample units of area. All dead fish in these units are counted and measured, and the counts are expanded over the entire affected area to estimate the total number of the fish in the kill. That is, a random sample is taken of areas, not of fish. The mortality to smaller fish and fish entrained in the water column are not accounted for in the types of visual surveys described by AFS. FMRI's sampling protocols adhered to these basic concepts of area sampling described by AFS, however, and as such, are consistent with the overall AFS protocols.

Comment (relating to FMRI injury assessment & report): Because it occurred after the acidic plume had passed and while pH in surface waters was still low, MPI feels FMRI's sampling did not accurately account for live fish which were still in the river but avoided the plume.

Response: All sampling efforts were focused on determining the number of fish killed by the acidic release. Sampling while the pH was low was critical to determining this number. During a fish kill event, it is necessary to conduct sampling during the narrow window of time when the ephemeral data is available for collection, i.e., when the dead fish are present in the river. This is principle is inherent in AFS protocols applicable to fish kill investigations.

Comment (relating to FMRI injury assessment & report): MPI believes that adding the larger animal clean-up data (dead fish collected by SWS; weighed and sampled by FGFC) to the larger fish kill estimated by Mote based on an earlier visual survey results in double counting of large dead fish. MPI indicates the Mote visual survey estimate of 57,900 should be used as the estimate of the larger fish killed.

Response: Agency representatives coordinated with SWS cleanup crews (under contract to MPI) during SWS' cleanup efforts to ensure the SWS collections did not confound the Agencies sampling efforts. SWS crews were to collect fish outside of transect areas. The instances where clean-up efforts overlapped transect areas were few (2-3). However, where that occurred, the Agencies did not include counts from those transects areas in the fish kill estimates generated by their sampling, to eliminate the potential for double counting between these methods. The addition of the resulting estimates, therefore, is appropriate.

Comment (relating to FMRI injury assessment & report): MPI comments that the FMRI sampling data cannot be extrapolated into canals and lagoons off of the main river channel as these areas were not likely impacted by the release.

Response: *FMRI* adjusted its final report to reflect a proportional decrease in the area of extrapolation.

Comment (relating to FMRI injury assessment & report): Given the non-uniform distribution of planktivorous fishes, MPI comments that the sampling design is insufficient.

Response: The sampling design is intended to estimate the number (biomass) of dead fish per unit area of the river. A non-uniform distribution of fish will increase the variability among the sample counts, but does not introduce bias and does not disqualify random sampling as an appropriate methodology.

Comment (relating to FMRI injury assessment & report): MPI comments that FMRI's stratification design is inappropriate, and the decision not to include segment 1 is arbitrary and capricious. MPI also believes FMRI mis-allocated their sampling efforts by taking 14 seine samples and 5 trawl samples.

Response: *MPI's comments regarding the FMRI's stratification design are unwarranted. MPI erroneously views FMRI's stratification regime as designed to stratify the river by segment, with only one replicate per stratum. This is an incorrect assumption. FMRI stratified according to gear type. Therefore, the sampling design included two strata: trawls, which sampled the river channels (five replicates) and seines, which sampled the shoreline areas (fourteen replicates). Segment 1 was excluded from the analysis because it violated the assumption of homogeneity of the stratum as it had different physical characteristics than the other segments as a result of dredging activities.*

Comment (relating to FMRI injury assessment & report): In commenting on an early draft of FMRI's fish kill assessment report, MPI proffered many criticisms of the subtraction method outlined therein and maintained it was an inappropriate and unreliable method for estimating fish losses.

Response: *MPI's comments and the Agencies' own review of the draft report led the Agencies to conclude the subtraction method was not the most appropriate method for estimating fish mortality. As a result, the Agencies are relying on the observed mortality analyses for this estimate.*

Comment (relating to FMRI injury assessment & report): MPI indicates that the standard error associated with the data analyses being used to assess the fish losses is too large to support a defensible estimate of fish mortality.

Response: The Agencies recognize the standard error associated with these analyses is large but have chosen the most reasonable and unbiased point estimate for the fish mortality for use in this assessment. That a larger sampling size would increase the precision of the estimate has no bearing on the interpretation of the existing data.

Comment (relating to FMRI injury assessment & report): MPI indicates that the sampling design and analyses are statistically and scientifically biased and suggested using a variety of alternative statistical procedures to evaluate the fish kill data.

Response: The Agencies' independent review of the FMRI report found no technical support for this comment. The Agencies found no evidence or basis for expecting the mortality estimate to decrease with the addition of more samples or data in this instance, even if that had been possible. In fact, given the range of numbers of dead fish in the existing samples, it is more likely losses would be closer to the Agencies' estimate rather than the number proposed by MPI. Furthermore, the alternative methods proposed by MPI are inappropriate and/or do not reduce the confidence intervals. Based on their independent review of the FMRI report, the Agencies remain of the view that the methods used in the final FMRI report provide the most reasonable and unbiased estimate of the fish killed due to the spill.

Comment: MPI states NOAA's biomass report demonstrates FMRI's estimate of small fish and shellfish killed is insignificant in terms of the total biomass of fish killed. MPI points out that of the 1.3 million small fish that FMRI estimates were killed, 1.1 million were bay anchovies and that the loss of these fish represents 84% of the fish killed but only three percent (3%) of the total lost biomass. Based on their understanding of restoration scaling for a similar 1992 spill, MPI believes the loss of 1.1 million anchovies requires only 0.17 acres of salt marsh restoration.

Response: The Agencies agree that small fish dominate the assessed fish kill on a numeric basis. This is clearly reflected in the associated injury reports and in the DARP/EA. Restoration scaling to replace the fish losses is being based on the total biomass of the fish lost. The loss of both small and large fish and shellfish are accounted for on a biomass basis and reflected in defining the scale of restoration accordingly. The Agencies make no present response to MPI's assertion regarding the restoration scale which relates to the small fish losses. MPI's statement relates to details of implementation of the scaling method identified in the Draft DARP/EA and these are generally addressed and documented later in the assessment process. Further, the scale of restoration for this spill will be determined based on inputs appropriate to this incident, the restoration selected to address the losses and based on the total biomass lost. Because of the case specific nature of these calculations, extrapolations or predictions based on other incidents is rife with potential for error and generally considered to be inappropriate.

Comment: MPI objects to characterizing the fish kill caused by the spill as "massive" or one from which the river had to recover. MPI indicated the Draft DARP/EA should make it clear that the fish, crab, and shrimp kill was partial and the impact was temporary. MPI cited NOAA's biomass report as confirming the fish kill represented only a loss of future biomass production for the affected individuals and did not impact reproduction or any species population.

Response: The Agencies feel strongly that the fish kill that occurred was significant and that time is required for the river environment to fully recover from these losses. This view is consistent with the NOAA report, which indicated the losses were locally significant, but relatively small in terms of affecting the total population in the Tampa Bay system. The Agencies do not believe the level of these losses were such that the reproductive capacity of any particular species was diminished or depressed to affect species populations in the longer term. The injury assessment and compensation determination for the fish injuries, accordingly, encompasses only the instantaneous fish mortalities and the lost future somatic growth associated with these losses.

Comment (relating to FMRI injury assessment & report): MPI describes the FMRI report as "seriously overstat[ing] the magnitude of the damage caused by the spill".

Response: The Agencies disagree. There was no inherent sampling bias that would lead to an inflated mortality estimate. Further, estimates of losses based on countable dead fish are, by nature, conservative; according to the AFS protocols fish counts "very seldom will... represent more than a modest fraction of the fish killed: the counts are based only on fish actually seen once during a dynamic, ongoing process". Only a small portion of the river was sampled, as it is impossible to capture visually or by seine and trawl all of the fish killed in each river segment. For these reasons, FMRI's estimate of fish mortalities can only, by its nature, represent an underestimate of actual mortality.

Comment: MPI believes it is evident from their review of information relating to the fish kill and post-spill conditions in the river that most of the fish, crab, and shrimp in the river escaped the impacts of the spill, and that species populations returned to pre-spill conditions fairly quickly following the event. MPI states recent data suggests natural recovery brought population levels to normal or near-normal numbers in the river in the months following the event.

Response: The Agencies recognize that some fish survived the spill, and that natural recovery processes likely began soon after the event, as is indicated in the FMRI report. The rate and period of recovery is variable, however, depending on the particular species, sizes and ages lost. The Agencies do not share MPI's view that full recovery from the fish kill losses was complete soon after the event or MPI's view of data or other information bearing on this issue.

Comment: The section on recovery is contradictory and should be rewritten and expanded. The DARP/EA should include the most recent recovery data available.

Response: The Agencies have acknowledged that recovery is occurring and this is based on the information on recovery available to the Agencies. It is unnecessary to include further recovery information in the DARP/EA since it does not affect the Agencies' assessment of the biomass lost,

which is based on the initial fish kill. From the information that is available, there is also no reason to believe that the release would give rise to any chronic toxicity which would inhibit recovery.

Comment: MPI has commented in support of the use of biomass as the scaling metric for restoration to address the fish losses. MPI notes it is continuing in its efforts to locate better data on secondary biomass production in salt marshes for use in the scaling process, including created versus natural marsh productivity ratios.

Response: The Agencies agree that lost biomass is an appropriate metric for determining the scale of restoration required to address the fish losses in this instance. For purposes of scaling restoration, the Agencies' own research indicated that 72.8 $g/m^2/yr$ represented the best estimate of secondary biomass production of salt marshes, based on the scientific information currently available. MPI has not provided any alternative estimate for the Agencies' consideration nor any further information which would suggest the estimate identified by the Agencies is inappropriate.

Comment: MPI comments that they believe artificial reefs will be the most productive form of restoration to address the fish losses.

Response: The Agencies disagree. The Agencies identified the best available data or information on the secondary productivity of artificial and oyster reef habitats. This information was used to support selection of the best approach for restoring the fish biomass lost in the final DARP/EA, and to support scaling of the selected option. This information led the Agencies to conclude oyster reef creation is the more productive form of and better choice for restoration in this instance. Oyster habitat productivity was estimated at 225 g/m2/yr whereas artificial reef productivity (accounting for fishing pressure) was estimated at 171.0 g/m2/yr. The Agencies also found that oyster reef habitat ecologically supported more of the types of species that were killed by this spill event than artificial reef habitat. The appropriateness of this restoration choice is reinforced by other considerations. These include the fact that functional oyster reef is presently a severely limited habitat in the Tampa Bay region and that the area preferred for restoration does not appear capable of supporting or as well suited to implementing the alternative restoration strategies (seagrass restoration, for instance) in its present ecological state.

Comment: In comments on the Draft DARP/EA, MPI requested that the Agencies scale MPI's proposed reef project as part of the DARP/EA process.

Response: The DARP/EA has not been changed based on this comment. The assessment and restoration planning process serves to identify the restoration approach and methodology to be used in defining public compensation for the natural resources injured or lost as a result of this incident. Within that process, restoration scaling is based on the restoration approach selected in the DARP/EA. MPI's proposed reef project is not consistent with the restoration approach identified in the DARP/EA. Scaling of MPI's non-selected restoration action is outside the scope of this assessment process. The costs incurred to do so would also be potentially non-recoverable.

Comment: In comments submitted, MPI has made clear its views that artificial reefs should be the restoration selected to address the fishery losses and that Estuarine Habitat Restoration should not be

chosen. In support of its position, MPI notes that the only documented injury occurring in Hillsborough County was the fish kill and states that artificial reefs are much more productive in terms of replacing fish biomass than estuarine habitat restoration.

Response: The Agencies disagree. As noted in the preceding response, the Agencies concluded that oyster reef creation is the more productive, appropriate and feasible form of restoration for providing fish biomass replacement in this instance than the creation of artificial reef. Further, of the species killed that are not documented as using oyster reef habitat, more of these species utilize salt marsh habitat for ecological support services than artificial reef. Other comments submitted on the Draft DARP/EA indicated a public preference for restoring both oyster and salt marsh habitat. Consequently, the Agencies believe a combination of oyster reef and salt marsh habitat creation is the best approach to restoring the fish biomass lost due to this spill.

Comment: MPI comments that artificial reefs, not oyster reefs, were originally considered by the Agencies and identified as preferred restoration for addressing the fishery losses. MPI believes that oyster reefs are one of the reef types with lowest productivity in terms of replacing biomass. MPI believes submerged reefs are much more productive and are more likely to replace lost fish biomass than oyster reefs.

Response: As a general matter, the Agencies do not share MPI's view of what was encompassed by the phrase 'artificial reef' in early assessment discussions. The Agencies considered the phrase as extending to all types or forms of created reefs. Materials such as limestone and/or oyster shell are appropriate for use to create reef structure, depending upon the type of reef to be created. The description of the Reef Creation alternative in the Draft DARP/EA, the first document to identify preferred restoration alternatives with the consensus of all Agencies, reflects the Agencies' view. As noted in the responses to previous comments, the Agencies disagree with MPI's views regarding oyster reef productivity. Public comments received on the Draft DARP/EA supported oyster reef creation as appropriate restoration to address the fishery losses.

VI. OTHER COMMENTS BY MPI

Comment: MPI has stated that only about 50 million gallons of process water, not 56 million, flowed into the Alafia River as a result of this spill. According to MPI, 6 million gallons of the spilled process water was recaptured on-site and did not enter the river.

Response: During the spill event, estimates of the amount of process water released varied, ranging between 50 to 56 million gallons. The Agencies recognize that calculating the volume released and the volume entering the river is subject to some imprecision. The Agencies have accepted MPI's estimate of the amount of process water entering the river and are using the 50 million gallon estimate for nitrogen loading calculations in this assessment. The Draft and Final DARP/EAs reflect this decision.

Comment: MPI asked that the Agencies clarify section 2.1 of the Draft DARP/EA to specify the substances designated as hazardous under CERCLA, other than phosphoric acid, which were released in the spill.

Response: Section 2.1 of the DARP/EA has not been changed based on this comment. The section states the released process water contained "one or more substances designated as hazardous under CERCLA, including phosphoric acid". The section is intended to provide a brief description of the spill incident, including a general indication of the basis for applying CERCLA to the incident. The statement as written is sufficient for that purpose. Further delineation of the hazardous substances defining this acidic mixture is neither required nor necessary to any action or decision covered by the DARP/EA.

Comment: MPI requested that the Agencies remove descriptions of the physical and biological environment affected by the spill from the Draft DARP/EA. MPI stated NEPA did not require that information to be included because the spill was a private party action, not a federal action which would trigger NEPA compliance. MPI also commented that the NEPA EA regulations do not specifically require a separate description of biological and physical environments in an EA.

Response: The Agencies disagree that the descriptions of or information on the physical and biological environments affected by the spill should be removed from the DARP/EA. While the spill was a private party action, the identification of restoration actions to address the injury, destruction or loss of the natural resources due to the spill is not. In determining the restoration actions which will be sufficient to satisfy public natural resource damages claims, NOAA and DOI believe that NEPA requires federal agencies to consider both the purpose and need for restoration as well as the effects of potential restoration alternatives on the human environment. Information on the physical and biological environments affected by the spill is important to that process and has been included in other restoration plans developed by federal trustee agencies.

Comment: MPI considered the Draft DARP/EA's listing of endangered species found in and around the Alafia River to be unnecessary and misleading. MPI felt the list need only include endangered species that might be significantly affected by restoration activity. Further, even if all might be found in the area of the Alafia River watershed, MPI stated it was unlikely that either the spill or restoration activity would have the potential to affect all of the species listed.

Response: The list of endangered species has been retained in the document, but has been moved to an appendix in an effort to avoid or reduce any confusion. The list is intended to acknowledge the endangered or threatened species which might be present in the affected watershed. This information aids in consultation processes intended to determine whether restoration actions may affect listed species pursuant to the Endangered Species Act or applicable state laws and, further, is part of the overall environmental setting which federal trustees are required to consider in assessing the potential environmental consequences of restoration actions pursuant to NEPA.

Comment: MPI stated the Agencies should delete the following sentence from the Draft DARP/EA (at 5.1, 1st paragraph; last sentence): "The cost of implementing those [restoration] actions represents a primary measure of an RP's natural resource damage liability." MPI believes a more appropriate sentence would be "The size and scope of a restoration project will be determined by scaling the benefits of the restoration project against the injured resources and interim losses."

Response: The final DARP/EA has not been changed based on this comment. The sentence appearing in 5.1 of the Draft DARP/EA is intended to describe the applicable legal framework for the assessment process. The sentence MPI offers is true, but addresses the manner in which the Agencies have proceeded to define restoration-based damages under that legal framework.

APPENDIX E: SUMMARY OF PUBLIC COMMENTS RELATED TO DRAFT RESTORATION PLAN AND AGENCIES' RESPONSE

The public has had an ongoing opportunity to attend restoration planning meetings during damage assessment phase and the opportunity to provide comments during the public comment period of the Draft Damage Assessment and Restoration Plan and Environmental Assessment (Draft DARP) released to the public on July 22, 1999. The following is a summary of the comments submitted by members of the public during the assessment and restoration planning process through August 21, 1999, the end of the public comment period on the Draft DARP, and a summary (provided in *italics*) of the Agencies' response to each comment. All comments submitted by the public during this period have been duly considered by the Agencies in the assessment process for this incident.

Public Comments related to the Assessment of Recreational Losses:

Comment: In assessing recreational injuries, the Agencies did not fully comply with Type 'A' and/or Type 'B' assessment procedures.

Response: As applied to assessment procedures, the Type A and Type B terminology derives from the guidance for the conduct of natural resource damage assessment found in 43 C.F.R. Part 11. These regulations describe Type A procedures as simplified procedures that require minimal field observation and, as further described in Subpart D of the regulations, encompass two specified models - one for potential application to coastal or marine environments and one for potential application in the Great Lakes environments. Type B procedures are described as those requiring more extensive field observations than the Type A models.

Use of a Type A model to estimate recreational losses for this incident was inappropriate. The released process water entered areas not covered by the current model for coastal or marine environments (i.e. inland areas to Mulberry, FL are not covered). Regulatory guidance indicates Type A procedures may be used only when the area of the release is covered by the model and its databases. 43 C.F.R. 11.34. Further, the model procedure did not address the potential for recreational losses identified by the Agencies. The potential for losses identified by the Agencies related to the fish kill, whereas the model only predicts losses flowing from closures.

Any further evaluation or assessment of the potential recreational fishing losses would have required reliance on specific Type B data collection and modeling procedures which are complex and expensive to implement. The Agencies weighed a number of factors in considering whether to proceed with this additional work, but ultimately concluded further action to assess these potential losses was not justified because the cost of this additional work was likely to exceed the value of the loss and the anticipated damages and, further, because restoration actions to address other resource injuries were likely to satisfy restoration objectives or requirements for any recreational fishing losses which may have occurred. This determination is supported by the definition of "reasonable cost" and the criteria for proceeding with an assessment found in 43 C.F.R. Part 11. See 43 C.F.R. 11.14(ee); 43 C.F.R. 11.23(e).

Comment: The Agencies were criticized for failing to conduct an adequate Preassessment of recreational losses. The commentor considered the Agencies' efforts to assess boat launch business volume in the initial assessment to be minimal. The commentor noted that five (5) public boat/canoe launch sites along the course of the river were affected by the spill and that the public was warned to avoid use of the river immediately after the spill. The commentor stated the warnings and widespread publicity regarding the ecosystem damage had a negative affect on the public's desire to use the river for recreation.

Response: The Agencies documented the river access closures at Alderman Ford Park, Lithia Springs Park, and the Alafia River Boat Ramp from December 9 to December 19, 1997. The Agencies also documented signs located at Williams Park and Riverview Park boat ramps warning the public against contact with the water. The Agencies considered the potential impacts of these closures and warnings on recreational activities in light of information available or collected through preassessment phase activities. However, due to the short duration of the closures and warnings and the heavy rains experienced during that same period (National Weather Service records indicate rain and/or mist events in the relevant areas occurred every day from December 9 through the morning of December 15 and that total rainfall during this period was 7.05 inches), the Agencies found any recreational losses during this period were likely minimal and would be insufficient to justify the potential cost of further action to confirm or assess such losses.

Comment: The Agencies were criticized for making no effort to assess long term recreational impacts due to ecosystem destruction.

Response: The Agencies are addressing the injuries to the ecosystem caused by the spill, including the likely duration of those losses, and have taken these impacts of the release – both in the short term and long term – into account in making determinations regarding further assessment of lost recreational uses of these resources. Restoration actions which are identified to compensate for the ecological losses, particularly for the lost fish, crabs, and shrimp, are expected to address any potential recreational losses associated with any of the direct ecological harms. For example, restoration actions which function to replace fish biomass lost are expected to offset any interim recreational fishing losses associated with the fish kill because opportunities for recreational anglers to catch fish, and the quality of the fishing experience, generally increase with increases in the availability of fish.

Comment: One commentor suggested that the Agencies conduct a random survey of a sample of riparian owners or local citizens in order to assess recreational losses.

Response: Surveys may be used to collect data needed to assess and quantify recreational losses, and are needed to develop models which predict such losses and/or the benefits to recreation from various restoration alternatives. To ensure the resulting data is valid and may be relied upon in the damage assessment context, the design and implementation of an appropriate survey involves consideration of many complex issues and the use of procedures which are generally recognized to be fairly sophisticated. The same is true of the processes used to analyze and model recreational losses

based on the data produced by these surveys. As noted above, the Agencies weighed a number of factors in considering whether to proceed with this additional work, but ultimately concluded further action to assess these potential losses was not justified because the cost of this additional work was likely to exceed the value of the loss and the anticipated damages and, further, because restoration actions to address other resource injuries were likely to satisfy restoration objectives or requirements for any recreational losses which may have occurred.

Comment: One commentor stated the NOAA Preassessment official made a subjective unilateral decision not to conduct a broad assessment of the baseline condition of the recreational use of the river which would exist but for the incident and, further, that this decision was arbitrary and capricious and violated the intent of Congress.

Response: The assessment process for this incident has been coordinated between and been conducted on behalf of five Agencies. This process was initiated almost immediately after the spill. All decisions in this process, including those involving potential recreational losses, have been based on consensus among the Agencies. The Agencies did consider possible means for obtaining additional data on baseline recreational use levels, including the use of surveys. The level of effort required to collect additional data would have been significant, however, and clearly beyond any limited early sampling or data collection efforts considered reasonable as part of preassessment activities. See 43 C.F.R. 11.22. For reasons summarized above, the Agencies concluded further action to assess the potential recreational losses was not justified. Among other factors, this decision took into account the potential cost of obtaining the additional information on baseline recreation uses which would have been necessary to identify and quantify any recreational losses attributable to the spill. It is the view of the Agencies that there was a rational basis for their decision in this regard and that it is wholly consistent with the guidance for the conduct of natural resource damage assessment found in 43 C.F.R. Part 11.

Comment: One commentor stated any restoration costs that are appropriate to restore an injured natural resource to its baseline condition may be recovered.

Response: State and federal laws allow the Agencies to recover the costs of restoration actions which will allow or assist natural resources or resources services return to baseline conditions or levels. These actions are referred to as "primary restoration". In determining the best approach to restoring resources or services to baseline, however, the Agencies must also consider whether recovery is likely to occur through natural processes. Active restoration is justified over natural recovery where such intervention is needed for recovery to occur or will accelerate the recovery process. See 43 C.F.R. 11.82. As outlined in the DARP/EA, the Agencies expect the resources injured by the spill to recover naturally within a reasonable period of time. The recovery of recreational services will parallel resource recovery or, in the case of the interim fishery losses, is expected to result from restoration actions undertaken to replace the fishery biomass lost.

Comment: Another commentor characterized the Draft DARP/EA as moderately, yet inadequately, addressing the recreational fishing losses. The commentor also indicated that no effort was made to address recreational boating losses.

Response: The basis for the Agencies decision not to further pursue the potential recreational fishing losses is addressed in previous responses. Contrary to the comment, the Agencies did consider the potential for recreational boating losses attributable to the spill but found the period of lost access to the river for boating was of short duration and the potential for losses diminished by heavy rains during this period. Accordingly, the Agencies found further action or cost to assess such losses was not justified.

Comment: One commentor indicated that contingent valuation has been upheld as an appropriate methodology by the Department of the Interior and the courts and represents an example of a technique that could have been used for assessment, but was not.

Response: Contingent valuation is a sophisticated methodology which seeks to identify and value resource losses based on hypothetical markets or other techniques designed to elicit an individual's economic valuation of a resource or service. The issues involved in its reliable use and application are some of the most complex and controversial in the field of natural resource economics, extending to such matters as determination of the affected population, identification of an effective sampling strategy for that population, avoiding respondent bias in the context or framing of the valuation question, pretesting of the survey instrument, survey administration and technical analyses of the survey data. Implementing the contingent valuation method in a reliable and valid manner requires a significant amount of both time and money. While it may be appropriately applied in some instances, the complexity and expense of this approach place it well beyond what could be justified as reasonable in this assessment.

Comment: One commentor felt little data was assembled on lost resource use concurrent with the spill event and in its immediate aftermath and that no attempt was made to gather data on the residual recreational lost use.

Response: As part of the preassessment process, the Agencies did search for and obtain information from readily available sources which could be used to evaluate the potential for recreational boating and fishing losses attributable to the spill. The Agencies contacted a number of local and state government agencies, private businesses, and local interest groups seeking information on baseline recreational use of the river and the reduction in boating and fishing related activities during and immediately following the spill period. Some information on baseline recreational fishing activity was obtained from both the Florida Game and Fish Commission and Florida Marine Research Institute. Some information was also made available by local businesses serving recreational fishermen and boaters on the Alafia. The available information, however, was fairly limited and the interpretation of this information in relation to the spill was seriously confounded by the heavy rainfall in the region which substantially overlapped the spill period. **Comment:** One commentor stated there is a glaring absence of any recreational use compensation in the Draft DARP/EA.

Response: The Draft DARP/EA did not include a restoration plan to specifically compensate for recreational losses because the Agencies determined that further action to assess compensation for such losses was not justified. For recreational fishing losses, however, the DARP/EA recognizes that the restoration selected to compensate for the fish biomass losses is also expected to address any potential recreational fishing losses associated with the fish kill.

Comment: A commentor expressed concern that the restoration actions considered in the Draft DARP/EA did not include a habitat enhancement, creation, or restoration project in the middle portion of the river.

Response: The DARP/EA identifies the restoration actions which should be undertaken but does not specify the sites at which this restoration should occur. The siting of these restoration actions will be a function of the specific projects which are selected for use to implement the restoration plan. The Agencies have to consider and are often limited by many factors in making restoration project selections. Among others, these include the type of restoration action to be undertaken, the restoration scale required to offset the losses which occurred, the opportunities to implement restoration of that type and scale in the affected watershed, site characteristics important to restoration success, and potential costs, including site acquisition or access costs. Project selection decisions are to occur following and be based on the DARP/EA.

Comment: One commentor inquired about the status of the Agencies' consideration of estuarine wetlands enhancement and restoration proposal involving use of the Tampa Electric Co. transmission line right-of-way as it crosses the river west of Interstate 75.

Response: The Florida Audubon Society has indicated the property underneath the Tampa Electric Company power transmission lines is still available as a possible restoration site, therefore, the area remains under consideration. It is one of several potential sites which may be used to implement estuarine wetlands restoration, in accordance with the restoration plan identified in the DARP/EA. Final project/site selections will be made in conjunction with restoration scaling determinations.

Comment: One commentor felt not enough emphasis is being placed on actual restoration in the river, particularly in the lower one-third.

Response: The restoration identified in the DARP/EA to compensate for the assessed fish losses would be implemented within or in close proximity to the lower one-third of the Alafia River, where estuarine conditions occur. The tidally influenced portion of the river would provide the habitat services needed to restore the lost fish biomass.

Comment: Several comments were received which indicated the restoration of freshwater aquatic plants in the affected system should be emphasized in restoration planning. The comments reflect the position that vegetative restoration is the most important type of restoration action necessary in the river because of its ability to enhance the filtering capabilities of the riverine system, thereby improving water quality in the river itself.

Response: The Agencies agree with these observations. The restoration plan outlined in the DARP/EA largely relies on the services provided by vegetated habitats, i.e. freshwater and estuarine wetlands, to compensate for resources losses caused by the spill. The services of a non-vegetated habitat, i.e. oyster reefs, is also taken into account and included in the restoration plan. Oyster reefs also provide ecological services which are important to the functional health of this ecosystem, including secondary biological productivity. Inclusion of this habitat in the restoration plan is consistent with the restoration objective for the fish losses. It will also facilitate the Agencies' ability to factor in the required restoration scale, site availability, implementation efficiencies and potential restoration costs in making final project selections.

Comment: Another commentor stated the Agencies should consider implementing seagrass restoration projects because seagrasses are "the foundation species of the ecosystem". The commentor submitted a restoration project proposal for the vicinity of the lower Alafia River involving use of a seagrass planting machine. The submission included a technical paper to support the use of the seagrass planting machine as feasible restoration technique.

Response: The Agencies recognize that seagrasses are keystone resources in the Tampa Bay ecosystem. The restoration of seagrasses in the Bay is one of the fundamental goals of the Comprehensive Conservation and Management Plan for Tampa Bay (CCMP), which served as a source of guidance to the Agencies in this restoration planning process. The primary action for advancing the restoration of seagrasses identified in the CCMP is the reduction of nitrogen loads entering Tampa Bay. The restoration alternatives selected in this DARP/EA to address the surface water and freshwater wetland injuries are expected to reduce nitrogen loading and thereby contribute to the natural recovery of seagrasses in the Bay.

Water quality and clarity are known to be key factors in identifying areas suitable for active restoration of seagrasses. In considering the specific proposal submitted by the commentor, the Agencies reviewed the areas within Tampa Bay targeted or considered technically appropriate for potential seagrass transplanting efforts and found that they do not presently include the lower Alafia River or around its mouth, in part because the water quality and clarity in these areas is still inadequate to support seagrasses. Further, the Agencies must rely on proven technologies to ensure a reasonable likelihood of restoration success and that restoration actions undertaken will be cost-effective. The proposed planting technique is itself in need of further testing and/or peer review before it could be appropriately incorporated in a restoration plan of this nature. The Agencies also found other deficiencies in the proposal.

Comment: One commentor indicated that the Agencies should consider implementing a vegetative restoration project that uses Paspalum vaginatum.

Response: The opportunity to plant vegetative species, such as Paspalum vaginatum (a native salt-tolerant grass common to marshes and shorelines), in implementing estuarine wetland restoration in accordance with the DARP/EA will largely be determined by the characteristics (elevation and salinity) at available sites. The Agencies will consider planting species such as Paspalum vaginatum where appropriate to site conditions.

Comment: One commentor suggested the Agencies consider dredging selected areas of the river to uncover and/or recreate natural depressions in the river bottom, which may have previously existed to create quiet pools in the river but been lost due to siltation.

Response: The Agencies investigated whether restoration of natural depressions in the Alafia River would be an appropriate or feasible restoration option. It is difficult to link the proposed restoration concept to the resource injuries which occurred, which is a threshold screening criterion in the restoration planning process. Such a project would increase river channel heterogeneity, but is unlikely to increase fish biomass to the same manner or degree as the other selected restoration alternatives. Further, restoration of this nature would not compensate for injured freshwater vegetation, or assist in reducing nitrogen loading in order to address the injuries to surface water.

Comment: One commentor suggested that the Agencies consider funding the Stream-WaterWatch Program (a community-based water quality monitoring and reporting program). The commentor indicated this would help raise public awareness regarding the importance of the river's water quality and in a more enduring manner than one time programs or actions such as grass planting.

Response: The Agencies recognize that programs such as Stream-WaterWatch do serve to raise public awareness regarding the importance of riverine water quality. However, the Stream-WaterWatch program would not itself function to actually restore or replace the natural resources or resource services which were lost. Further, any indirect benefits in this regard would not be measurable. As such, the proposed project does not represent a restoration alternative which is being considered in this assessment process.

Comment: One commentor indicated support for restoration projects which result in a direct positive benefit to the ecology of the Alafia River and, in this regard, viewed water quality improvement projects, habitat creation and enhancement projects, seagrass restoration projects, saltmarsh restoration, and vegetative planting projects favorably. The commentor also expressed concern that if restoration projects are implemented outside of the river, no improvements would result in areas directly impacted by the spill.

Response: The type of projects identified by the commentor could all be viewed as generally beneficial to the Tampa Bay ecosystem. The restoration plan set forth in the DARP/EA includes restoration actions of each type except for the direct restoration of seagrasses. The Agencies disagree, however, that a restoration project implemented outside the river would not function to restore resources injured by the spill. For instance, many of estuarine fish species which were lost utilize different habitats throughout the year, including as found in riverine areas and in Tampa Bay. In appropriate instances, restoration projects may be spatially separate from the immediate area where the injury occurred but still achieve restoration objectives.

Comment: Another commentor opposed the creation of artificial limestone reefs at any location both within and outside the river. The only type of reef creation supported by the commentor is oyster reef creation within the river.

Response: The Agencies agree that oyster reef creation is represents a better restoration approach in this instance than limestone reef creation. This is based on the secondary production estimated for oyster reefs, which is higher than for artificial reefs, and the evidence indicating that oyster reef will ecologically support more of the types of species that were killed by this spill event.

The specific location of the oyster reef creation is not determined at this time, however, the Agencies prefer and will seek to implement such restoration within the river in order to ensure resources like those lost benefit most directly from the selected restoration actions. Information from an earlier oyster reef demonstration project, completed by the Tampa Bay Regional Planning Council in 1995, suggests that suitable sites for creating oyster reef within the river may be available. Location of specific sites will depend on technical requirements for restoration success and other practical constraints.

Comment: Another commentor supported the concept of reef creation, particularly in the mouth of the Alafia River, but indicated creation of reefs anywhere in the northeast part of Tampa Bay would be appropriate.

Response: The Agencies agree that oyster reef creation is appropriate and have included it as part of the restoration plan to address the fish biomass lost. As noted in the previous response, the Agencies will seek to will seek to implement such restoration within the river but site selection will ultimately depend on other factors, including technical requirements for restoration success.

General Public Comments:

Comment: One commentor indicated that public notices issued by the Agencies should be published in both the Tampa Tribune and the St. Petersburg Times - Tampa Edition.

Responses: A public notice regarding release of the Draft DARP/EA was included in the Lakeland Ledger and the Tampa Tribune. While that notice was legally sufficient, the Agencies are not opposed to broadening the publication of future notices. The Agencies need to ensure costs remain reasonable, however. As such, this discretion will be exercised on a case-by-case basis. The Agencies have elected to include the public notice regarding the release of the final DARP/EA in the St. Petersburg Times - Tampa Edition in this instance.

Comments: One commentor noted other wildlife which inhabit the river basin were not listed or mentioned in the Draft DARP/EA, including owls, crows, bats, river otters, and raccoons. The commentor expressed concern that the lack of discussion of these animals in the Draft DARP/EA might imply the spill damage to these animals is considered to be negligible or inconsequential.

Response: None of the animals identified by the commentor were discussed in any detail in the Draft DARP/EA because none were observed injured following the spill and none of the information or evidence available to the Agencies during the preassessment phase indicated a significant potential for injury to animals other than birds. Many of these animals will nonetheless benefit from the restoration actions selected in the DARP/EA.

APPENDIX F: SUMMARY OF COASTAL ZONE MANAGEMENT ACT (CZMA), CONSISTENCY REVIEW COMMENTS AND FEDERAL AGENCIES' RESPONSE

NOAA and DOI submitted their determination of consistency to the Florida Department of Community Affairs (DCA) for review. The Florida State Clearinghouse circulated the Draft DARP/EA to the appropriate State Agencies for review. Comments were provided by three (3) State Agencies; the Department of State, the Fish and Wildlife Conservation Commission, and the Tampa Bay Regional Planning Council.

Comment : The Florida Department of State (DOS), Division of Historical Resources indicates that the nature and or location of the proposed project activities (restoration of riverine habitat, restoration of estuarine wetlands and the reef creation) is such that they could have an adverse effect on historic properties listed, or eligible for listing in the National Register. DOS goes on further to state that early and sufficient consultation with the State Historic Preservation Officer is required so the project will be consistent with the Historic preservation laws of Florida's Coastal Management Program.

Response: As stated in Section 8.0, of the DARP/EA the Agencies will consult with the Florida State Historic Preservation Officer prior to implementation of any restoration project.

Comment: The Florida Fish and Wildlife Conservation Commission (FWCC) identified conversion of one native habitat type into the target restoration habitat type as a potential problem with the Draft DARP/EA. FWCC notes that such a practice can lead to the loss of valuable coastal upland habitat, and the conversion of one wetlands habitat type to another more common wetland type of less maturity. Native upland habitat, riparian river buffers and native wetland habitats are three important habitat types FWCC state should be protected from restoration conversion.

Response: The DARP/EA has been modified address this point. Specifically, Sections 6.3 and 6.4 of the DARP/EA have been modified to indicate that non-native uplands or non-native wetlands will be the target of wetland restoration efforts.

Comment: FWCC questioned the link between deeper water reef creation and the restoration of injured resources, particularly the restoration or replacement of lost fish biomass. FWCC states that while there can be exchange between deeper water and river fauna on a life-cycle scale, the ability of higher salinity reef systems to off-set for oligohaline nursery habitat is questionable. They state a mid-bay reef is likely to contribute little to the upper and middle Alafia River fish biomass.

Response: The purpose of reef restoration is not to off-set oligohaline habitat, as suggested by FWCC, but to restore lost fish biomass. To address the secondary productivity of different habitats and determine the most productive form of restoration, the Agencies conducted an

investigation of reef habitat productivity using best available information and data. Based on the investigation, of the oyster reef and artificial reef restoration options, oyster reef creation is the most productive form of restoration. Oyster habitat productivity was estimated at 225 $g/m^2/yr$ and artificial reef productivity, accounting for fishing pressure, was estimated at 171.0 $g/m^2/yr$. Further, the investigation also determined that oyster reef supports more types of species that were injured in the fish kill than the suggested artificial reef. Saltmarsh habitat was identified as the habitat best able to support species which are not supported by oyster reef. Consequently, the Agencies determined that oyster reef habitat (not deep water artificial reef habitat) combined with restoration of estuarine habitat is the preferred alternative for the restoration of lost fish biomass.

Comment: FWCC disagrees that land acquisition should be rejected as a preferred restoration alternative. FWCC explains that some level of land acquisition is required to implement restoration of riverine habitat or estuarine habitat and that protection of river buffers can substantially improve upon current and future water quality, nutrient loading, and wildlife habitat for the Alafia River basin.

Response: The Agencies agree that some form of land acquisition may be required to implement restoration of riverine habitat or estuarine habitat alternatives and have modified Section 6.3 and 6.4 of the DARP/EA to make this clear. There are opportunities to partner with public agencies to restore lands already held in public trust that would not require land acquisition, however. This scenario is more cost effective and equally capable of restoring natural resource injuries and services than a restoration alternative that includes land acquisition. The Agencies also agree that land acquisition, with accompanying land management changes, could substantially improve water quality, nutrient loading and wildlife habitat, but disagree that Land Acquisition is the best means to do so as described in the DARP/EA at Section 6.7.1, Evaluation of Alternative. Land acquisition with management changes alone remains a non-preferred restoration alternative.

Comment: FWCC comments that given the location and extent of the spill impact, the habitat restoration should be concentrated in the upper oligohaline portion of the Alafia River. (Oligohaline is a term to characterize water with a salinity range between 0.5-5 ‰ [parts per thousand] due to ocean-derived salts.)

Response: The Agencies agree that the upper oligohaline portion of the Alafia River is an appropriate area to target for restoration. Oligohaline areas are identified in the Tampa Bay CCMP as well as other regional restoration planning documents used to guide restoration planning activities. The location of estuarine habitat restoration, however, are determined by the restoration criteria identified in Section 5.2.1, and by factors such as the scale of the restoration and the availability of potential sites. If during project site selection for saltmarsh restoration projects, the agencies can choose between oligohaline and other higher salinity sites, the Agencies will identify oligohaline as the preferred project site.

Comment: The Tampa Bay Regional Planning Council comments that the DARP/EA provides a comprehensive evaluation of natural resource losses and potential mitigation alternatives, but an acreage or amount of habitat to be created or enhanced as mitigation for the natural resource losses is not specified nor is a monetary penalty for the losses. Mitigation ratios are recommended from The Future of the Region: Strategic Regional Policy Plan for the Tampa Bay Region (FRSRPP) Policies 4.5.1, 4.5.2 and 4.5.6. These ratios call for a minimum of 4 created :1 impacted or 8 restored : 1 impacted to mitigate for resource losses.

Response: The Agencies disagree that mitigation ratios should be used as the basis of determining the required restoration acreage. As specified in Section 6.1, the scale of a compensatory restoration action depends on both the nature and extent of the resource injury and how quickly each resource and its associated services return to baseline. The spill injuries are expected to recover naturally over time. So only the interim loss of resources and resource services must be restored. Mitigation ratios established by Policy 4.5.2 are for allowable or permitted impacts in cases of overriding public interest. The spill is an unauthorized incident and not in the public interest. Moreover, use of mitigation rations is not defensible in a DARP/EA. A DARP/EA is the basis of the Agencies' damage claim if this case goes to court. Use of mitigation ratios may be arbitrary and capricious when other restoration scaling methodologies, such as the Habitat Equivalency Analysis (HEA), have been upheld in court.

The Agencies believe that the objective of the DARP, to restore injured resources, is consistent with FRSRPP Policy 5.2.1. However, the restoration due to the public is compensatory not punitive. Penalties are not assessed in the context of natural resource damage assessment, but the State has the authority to impose a monetary penalty independent of the natural resource damage assessment process.